Методы минимизации функций алгебры логики. Анализ и синтез логических устройств

08.07.2019

Методы поиска минимумов функций. Поиск максимумов сводится к поиску минимумов путем изменения знака ф-ции. М. ф. м.- раздел вычислительной математики, играющий большую роль в таких приложениях, как выбор оптим. вариантов в задачах планирования, проектирования и операций исследования, управления технологическими процессами, управления движением сложных объектов и т. п. М. ф. м. применяются также для решения систем ур-ний и неравенств при отыскании спектра операторов, при решении краевых задач и т. п.

Наиболее изучены М. ф. м- применительно к ф-циям, определенным во всем -мерном евклидовом простр. Рассмотрим их, не касаясь дискретных и дискретно-непрерывных задач минимизации, а также задач минимизации при наличии ограничений. Последние во многих случаях можно свести к задаче безусловной минимизации (напр., с использованием штрафных ф-ций). Не будем рассматривать методы нахождения минимума, основанные на непосредственном использовании необходимых условий экстремума, т. к. решение получаемых при этом систем нелинейных ур-ний можно рассматривать как задачу минимизации суммы квадратов невязок (или максимума модуля невязок). Возможность применения и сравнительная эффективность различных М. ф. м. во многом определяется классом ф-ций, к которому они применяются. Большинство М. ф. м. дают возможность находить локальный минимум, и лишь априорная информация о свойствах ф-ции (выпуклость, унимодальность) позволяет считать этот минимум глобальным. Методы, гарантирующие поиск глобального минимума с заданной точностью для достаточно общих классов ф-ций, являются весьма трудоемкими. На

практике для нахождения глобального минимума в основном используется сочетание Монте-Карло метода и одного из методов локальной минимизации.

Широкий класс М. ф. м. описывают следующей вычислительной схемой. Пусть минимизируемая ф-ция, определенная в произвольно выбранная начальная точка. Допустим, что имеет непрерывные частные производные до порядка включительно будем рассматривать как производную нулевого порядка). Для получения последовательных приближений к локальному минимуму строится последовательность точек по ф-лам следующего вида:

где обозначает вектор частных производных порядка вычислимые ф-ции своих аргументов. Порядок высших частных производных, вычисляемых для реализации ф-лы (1), наз. порядком метода. Осн. группа применяемых на практике методов имеет ту особенность, что информация, необходимая для вычисления очередного значения выражается через ограниченное к-во параметров, вычисляемых на данном шаге и предыдущих шагах процесса. Метод называют -ступенчатым, если схема алгоритма имеет, начиная с некоторого следующую структуру: на шаге вычисляем параметры где - некоторое натуральное число, и вектор по ф-лам следующего вида:

(начальные параметры вычисляются с помощью спец. процедур). В широко распространенных методах спуска оператор конкретизируется в следующей форме:

где вещественное число, которое наз. шаговым множителем, вектор определяет направление спуска. Среди методов спуска выделяются методы монотонного спуска или релаксационные методы. Метод релаксационным, если при к Бели непрерывно дифференцируема, то релаксационность метода (3) обеспечивается, когда направление спуска образует острый угол с направлением градиента и достаточно мал. Обшая теория релаксационных процессов развита наиболее полно для случая выпуклых ф-ций. В качестве осн. параметров, характеризующих процесс, рассматриваются углы релаксации между и направлением градиента), а также множители релаксации определяемые равенством

где градиент ф-ции (для квадратичного функционала при наискорейшем спуске). Обозначим через приведенный коэфф. релаксации. Необходимое и достаточное условие сходимости релаксационного процесса для сильно выпуклой ф-ции :

Среди релаксационных методов наиболее известны градиентные методы. Рассмотрим более подробно одноступенчатые методы градиентного типа. Общая схема их следующая:

В рамках этой схемы можно выделить такие модификации:

а) градиентный спуск с постоянным шагом: единичная матрица;

б) наискорейший градиентный спуск: , где определяется из условия минимума

в) метод Ньютона-Рафсона: , где - гессиан в точке

г) промежуточные схемы: . К числу наиболее распространенных двухступенчатых градиентных методов можно отнести методы сопряженных градиентов; примером двухступенчатой схемы является метод сопряженных градиентов Флетчера - Ривза:

Методы a) и б) при достаточно общих условиях (первый - при достаточно малом а) сходятся к локальному минимуму со скоростью геом. прогрессии. Метод в) при достаточно общих условиях сходится из достаточно малой окрестности минимума с квадратичной скоростью. Промежуточная схема г) более гибкая и позволяет при определенной регулировке последовательностей также получить квадратическую скорость сходимости при более слабых требованиях на начальное приближение.

Недостатком методов в), г) является необходимость вычисления гессиана. От этого недостатка избавлены методы сопряженных градиентов и так называемые алгоритмы с изменяемой метрикой, обладающие свойствами ускоренной сходимости для достаточно гладких ф-ций в окрестности минимума. Схемы алгоритмов с изменяемой метрикой по своему характеру являются комбинацией схемы сопряженных градиентов и метода Ньютона - Рафсона. Одновременно с движением по схеме типа сопряженных градиентов происходит итеративная аппроксимация матрицы, обратной гессиану в точке минимума. После каждых п шагов процесса происходит шаг по методу Ньютона-Рафсона, где вместо выступает ее аппроксимация.

Если градиент разрывен, перечисленные выше методы не применимы. Поэтому большое значение имеют методы минимизации выпуклых (не обязательно дифференцируемых) ф-ций; эти методы можно условно разбить на 2 группы: 1) методы градиентного типа и 2) методы «секущих плоскостей». К 1-й группе относятся различные модификации обобщенных градиентов метода, а также схемы с ускоренной сходимостью, основанные на растяжении простр. в направлении градиента или разности двух последовательных градиентов. К методам 2-й группы относится, напр., метод Келли. Пусть ЗП - выпуклое (ограниченное) мн-во, на котором определена последовательность точек, в которых вычисляется обобщенный градиент . Тогда находится как решение задачи: найти

Метод Келли сходится по функционалу при любом начальном . Из распространенных методов минимизации следует отметить, в частности, метод оврагов для минимизации ф-ций с сильно вытянутыми гиперповерхностями уровня; методы покоординатного поискас изменяемой системой координат; методы случайного поиска; комбинированные методы быстрого спуска и случайного поиска, когда направление убывания ф-ции находится методом Монте-Карло; методы дифференциального спуска, стохастической аппроксимации методы и др. В задачах оптим. регулирования большое значение имеют методы поиска нулевого порядка. В основе алгоритмов минимизации для этого случая обычно лежит идея линейной или квадратичной аппроксимации минимизируемой ф-ции или разностной аппроксимации соответствующих частных производных. Для поиска экстремума глобального предложен ряд методов. Осн. из них: метод Монте-Карло, комбинация метода Монте-Карло определения начальной точки с одним из алгоритмов локального поиска, методы, основанные на построении нижней огибающей данной ф-ции, методы последовательного отсечения подмн-в, методы построения траекторий, всюду плотно покрывающих область определения ф-ции, и минимизации вдоль этих траекторий.

Для решения спец. классов многоэкстремальных задач используются методы программирования динамического.

В наст, время создаются оптим. алгоритмы минимизации ф-ций разных классов. Пусть класс ф-ций, определенных в кубе , и имеющих в частные производные до s-го порядка, удовлетворяющие условию Липшица с константой L. Любой алгоритм минимизации из , использующий информацию о значениях f и ее производных до порядка включительно не более чем в N точках эквивалентен (в смысле результата) некоторому алгоритму А получения последовательности итераций (1) для и аппроксимации искомого значения при помощи итоговой операции

где - некоторая вычислимая ф-ция. Введем следующие обозначения:

Алгоритм, для которого достигается оптимальным. Условия означают соответственно асимптотическую оптимальность и оптимальность по порядку алгоритма Можно показать, что

причем выбор , влияет лишь на константу в указанной оценке. В частном случае и имеем:

где миним. сеть в .

Другой подход к построению оптим. алгоритмов минимизации связан с обобщением идей последовательных статистических решений. Алгоритм минимизации рассматривается как управляемая последовательность опытов, каждый из которых дает тот или иной исход. На совокупности исходов определяется априорная вероятностная мера. После получения конкретного исхода очередного опыта происходит перераспределение вероятностей по ф-ле Байеса и выбирается следующий опыт или принимается окончательное решение. Алгоритмы отличаются друг от друга правилом, по которому выбирается следующий опыт, правилами остановки и выбора окончательного решения. Качество решения определяется ф-цией потерь, которая усредняется в соответствии с полученным на данном этапе вероятностным распределением. В этих терминах ставится задача выбора оптим. алгоритма как построения последовательного байесовского правила поиска решений. Такая постановка интересна тем, что в ее рамках можно учитывать статистические свойства класса решаемых задач, сопоставлять «средние» потери, связанныз с погрешностью решения, с затратами, связанными с уточнением решения. Лит.: Любич Ю. И., Майстровский Г. Д. Общая теория релаксационных процессов для выпуклых функционалов. «Успехи математических наук», 1970, т. 25, в. 1; Михалевич В. С. Последовательные алгоритмы оптимизации и их применение. «Кибернетика», 1965, N5 1-2; Иванов В. В. Об оптимальных алгоритмах минимизации функций некоторых классов. «Кибернетика», 1972, № 4; Уайлд Д. Дк. Методы поиска экстремума. Пер. с англ. М., 1967.

В. В. Иванов, В. С. Михалевич, Н. 3. Шор.

Наиболее употребляемая операция при минимизации функций - это операция склеивания.

AB+ ВB=B (A+ В)=B.

Рассмотрим три наиболее распространенных метода минимизации.

1. Пусть будут заданы номера наборов четырех переменных, на которых логическая функция принимает единичное значение: f (2,5,6,7,10,12,13,14)=1.

Выразим эту логическую функцию в СДНФ (символ конъюнкции писать не будем):

f (0010,0101, 0110, 0111, 1010, 1100, 1101, 1110) =

На первом этапе минимизации исходную СДНФ можно упростить за счет использования закона склеивания, тогда получим:

Обращаем внимание на то, что одну и ту же конституенту (импликанту) можно склеивать с другими конституентами (импликантами) многократно, так как в логике Буля действует закон идемпотентности:

поэтому любую конституенту можно размножить.

На втором этапе воспользуемся таблицей Куайна (табл. 8), в соответствии с которой данный метод минимизации получил свое наименование - метод Куайна. В таблице по вертикали перечислены все полученные на первом этапе упрощения импликанты, а по горизонтали - исходные конституенты. Единица в табл. 8 стоит там, где импликанта «накрывает» конституенту. Дело в том, что конституента всегда может быть заменена импликантой или даже отдельным термом по закону поглощения:

Таблица 8

После заполнения таблицы Куайна у нас получилось так, что почти в каждой графе оказалось по две единицы; между тем достаточно иметь одну единицу в графе. Поэтому, по возможности, нужно исключить избыточные единицы. Выбор единиц производится из соображений минимальности числа термов (выбранные единицы затемнены). В итоге оказалось, что можно обойтись только тремя импликантами вместо шести:

С помощью таблиц истинности легко проверить, что полученная в МНФ функция воспроизводит все значения исходной функции. Отметим, что в общем случае решений по критерию минимума термов может быть несколько.

2. Не менее эффективным способом минимизации логических функций является метод сочетания индексов. Для его изложения составим табл. 9, в графах которой записаны возможные сочетания индексов. В последней графе выписаны значения функции. Анализ таблицы начинается слева по столбцам. Принцип исключения i, j_кода следующий. На пересечении i_столбца, например, с сочетанием индексов 23, и j_строки, например, 3_ей, находится код 10, что соответствует импликанте. Следовательно, в этом столбце везде, где встречается код 10, т. е. в строках 2, 3, 10 и 11, эти коды исключаются, поскольку значение функции в 3_ей строке равно нулю. Теперь возьмем столбец с сочетанием индексов 124. Здесь во 2_ой и 6_ой строках оставлены коды 010, а в 10_ой и 14_ой строках - код 011. Сделано это потому, что эти коды встречаются только на строках со значением функции, равным единице. Напротив, код 110 этого же столбца встречается как при единичных значениях функции, так и при нулевых.

Таблица 9

Итак, все коды на строках, заканчивающихся нулевыми значениями функции, исключаются автоматически. Если эти коды попадают на строки, заканчивающиеся единичным значением функции, то они также не учитываются. Остаются только те коды, которые расположены на строках с единичным значением функции (эти коды затемнены).

Далее руководствуются следующим правилом. Для того чтобы функция приняла значение, равное единице, достаточно того, чтобы только какая-нибудь одна импликанта на строке приняла единичное значение. Прежде всего, оставляем минимальную импликанту, которая перекрывает единицы в строках 2, 6, 10 и 14. Затем, естественно, обращаемся к 12_ой строке. Здесь оставляем единственный на строке код 011, что отвечает импликанте. Эта же импликанта ответственна за 13_ую строку, оканчивающуюся тоже единицей. Осталось рассмотреть 5_ую и 7_ую строки. Общей для них является импликанта: . Таким образом, тремя импликантами мы перекрыли все единичные значения функции, что совпадает с результатом, полученным на основе таблиц Куайна.

3. Существует графический способ склеивания, который получил название метод карты Карно (представлен в табл. 10). Выделяем смежные единицы, это и будут слагаемые нашей функции.

Таблица 10

Получили два слагаемых

Хотя табл. 9 более громоздка, чем табл. 8, метод сочетания индексов не считается более сложным, чем метод Куайна, если помнить, что до составления таблиц Куайна необходимо произвести многочисленные склейки конституент и импликант. Реализация на компьютере алгоритма метода сочетания индексов оказывается сравнительно простой. И напротив, внешняя простота и наглядность третьего метода минимизации логических функций с помощью карт Карно оборачивается сложной программой при реализации алгоритма на компьютере.

Таблица 11

Таблица 12

Карта Карно для четырех переменных представлена в виде табл. 11. Каждая клетка карты соответствует конституенте. Заполненная карта представлена табл. 12 (функция взята та же, что и в первых двух методах). Согласно закону склеивания, две смежные конституенты с единичными значениями всегда можно объединить для получения соответствующей импликанты. Причем смежными считаются и те, которые лежат на границах карты. Какие именно единицы требуется объединить для получения подходящей импликанты, легко определить визуально. Следует также помнить, что в соответствии с законом идемпотентности одна и та же единица табл. 12 может склеиваться с двумя или тремя смежными единицами.

Студент должен:

Знать:

· Методы минимизации логических функций.

Уметь:

· Выполнять минимизацию функций методом непосредственных преобразований; Выполнять минимизацию функций методом непосредственных преобразований;

· Выполнять минимизацию функций с помощью карт Карно.

Метод непосредственных преобразований

Логическая функция, задающая принцип построения схемы цифрового устройства, может быть, как было показано выше, представлена в виде таблицы истинности или в виде СДНФ или СКНФ и может быть использована для получения логической схемы устройства. Однако полученная логическая схема, как правило, не будет оптимальна. Поэтому важным этапом синтеза логических схем является минимизация логических функций.

Минимизация (упрощение формы записи) функции является важной операцией при синтезе логической схемы, так как благодаря предварительно проведенной минимизацией схема реализуется с наименьшим числом элементов.

Для минимизации разработан ряд методов. Одним из простых методов минимизации является метод непосредственных преобразований, который осуществляется с использованием основных теорем алгебры логики.

Например, логическую функцию

в виде СДНФ, можно минимизировать следующим образом:

1. Добавим к данной функции слагаемое , которое уже есть в данной функции, используя правило х+х=х

2. Применим метод склеивания одинаково подчеркнутых элементарных конъюнкций

3. Применим метод склеивания для двух последних элементарных конъюнкций

Полученная в результате минимизации логическая функция называется тупиковой. Логическая функция может иметь несколько тупиковых форм.

Выявление и устранить избыточности в записи функции путем её преобразований с использованием аксиом, законов, тождеств и теорем алгебры логики требуют громоздких выкладок и связаны с большой затратой времени.

Карты Карно

Метод непосредственных преобразований наиболее пригоден для простых формул, когда последовательность преобразований очевидна для исполнителя. Наиболее часто этот метод применяется для окончательной минимизации выражений, полученных после минимизации их другими методами.



Стремление к алгоритмизации поиска соседних элементарных произведений привело к разработке табличных методов минимизации логических функций. Одним из них является метод, основанный на использовании карт Карно.

Карты Карно были изобретены в 1952 Эдвардом В. Вейчем и усовершенствованы в 1953 Морисом Карно, физиком из «Bell Labs», и были призваны помочь упростить цифровые электронные схемы.

Карта Карно - это графическое представление таблицы истинности логических функций. Она представляет собой таблицу, содержащую по 2 n прямоугольных ячеек, где n - число логических переменных.

Например, карта Карно для функции четырех переменных имеет 2 4 = 16 ячеек.


Структура карты Карно для функций двух переменных показана на рисунке 2.2. 2

Рисунок 2.2


На рисунке 2.3 представлена структура карты Карно для функции трёх переменных.

а) таблица истинности; б) структура карты Карно

Рисунок 2.3

Карта размечается системой координат, соответствующих значениям входных переменных. Например, верхняя строка карты для функции трех переменных (рисунок 2.3) соответствует нулевому значению переменной x1, а нижняя - ее единичному значению.

Каждый столбец этой карты характеризуется значениями двух переменных: х2 и х3. Комбинация цифр, которыми отмечается каждый столбец, показывает, для каких значений переменных х2 и х3 вычисляется функция, размещаемая в клетках этого столбца.

Если на указанном наборе переменных функция равна единице, то ее СДНФ обязательно содержит элементарное произведение, принимающее на этом наборе единичное значение. Таким образом, ячейки карты Карно, представляющие функцию, содержат столько единиц, сколько элементарных произведений содержится в ее СДНФ, причем каждой единице соответствует одно из элементарных произведений.

Обратим внимание на то, что координаты строк и столбцов в карте Карно следуют не в естественном порядке возрастания двоичных кодов, а в порядке 00, 01, 11, 10. Изменение порядка следования наборов сделано для того, чтобы соседние наборы были соседними, т.е. отличались значением только одной переменной.

Ячейки, в которых функция принимает значения, равные единице, заполняются единицами. В остальные ячейки записываются нули.

Процесс минимизации рассмотрим на примере, представленном на рисунке 2.4.

а) таблица истинности; б) карта Карно

Рисунок 2.4

Сначала формируем прямоугольники, содержащие по 2k ячеек, где k - целое число.

В прямоугольники объединяются соседние ячейки, которые соответствуют соседним элементарным произведениям.

Например, на рисунке 2.4,б объединены ячейки с координатами 001 и 101. При объединении этих ячеек образовался прямоугольник, в котором переменная x1 изменяет свое значение. Следовательно, она исчезнет при склеивании соответствующих элементарных произведений и останутся только х2 и х3, причем переменную х2 берем в инверсном виде, т.к. она равна 0.

Ячейки, расположенные в первой строке (рисунок 2.4 б), содержат единицы и являются соседними. Поэтому все они объединяются в прямоугольник, содержащий 2 2 = 4 ячейки.

Переменные х2 и х3 в пределах прямоугольника меняют свое значение; следовательно, они исчезнут из результирующего элементарного произведения. Переменная х1 остается неизменной и равной нулю. Таким образом, элементарное произведение, полученное в результате объединения ячеек первой строки рисунка 2.4 б, содержит лишь один х1, который берем в инверсном виде, т.к. он равен 0.

Это, в частности, следует из того, что четырем ячейкам первой строки соответствует сумма четырех элементарных произведений:

Двум ячейкам сторого столбца соответствует сумма двух произведений

Функция, соответствующая рисунку 2.4 имеет вид:

Совокупность прямоугольников, покрывающих все единицы, называют покрытием. Заметим, что одна и та же ячейка (например, ячейка с координатами 001) может покрываться два или несколько раз.

Итак, можно сделать следующие выводы:

1. Формула, получающаяся в результате минимизации логической функции с помощью карт Карно, содержит сумму стольких элементарных произведений, сколько прямоугольников имеется в покрытии.

2. Чем больше ячеек в прямоугольнике, тем меньше переменных содержится в соответствующем ему элементарном произведении.

Например, для карты Карно, изображенной на рисунке 2.5 а, прямоугольнику, содержащему четыре ячейки, соответствует элементарное произведение двух переменных, а квадрату, состоящему всего лишь из одной ячейки,- элементарное произведение включающее все четыре переменные.


а) б) в)

Рисунок 2.5

Функция, соответствующая покрытию, показанному на рисунке 2.5 а, имеет вид:

Несмотря на то, что карты Карно изображаются на плоскости, соседство квадратов устанавливается на поверхности тора. Верхняя и нижняя границы карты Карно как бы «склеиваются», образуя поверхность цилиндра. При склеивании боковых границ получается тороидальная поверхность. Следуя изложенным рассуждениям, устанавливаем, что ячейки с координатами 1011 и 0011, изображенные на рисунке 2.5 б, являются соседними и объединяются в прямоугольник. Действительно, указанным ячейкам соответствует сумма элементарных произведений

Аналогично объединяются и остальные четыре единичные ячейки. В результате их объединения получаем элементарное произведение .

Окончательно функция, соответствующая покрытию, изображенному на рисунке 2.5 б, имеет вид

Карта Карно, показанная на рисунке 2.5 в, содержит единичные ячейки, расположенные по углам. Все четыре ячейки являются соседними, и после объединения дадут элементарное произведение

Рассмотренные выше примеры позволяют сформулировать последовательность проведения минимизации логических функций с помощью карт Карно:

1. Изображается таблица для n переменных и производится разметка ее сторон.

2. Ячейки таблицы, соответствующие наборам переменных, обращающих функцию в единицу, заполняются единицами, остальные ячейки - нулями.

3. Выбирается наилучшее покрытие таблицы правильными прямоугольниками, которые обводим контурами. В каждом прямоугольнике должно быть 2 n ячеек.

4. Одни и те же ячейки с единицами могут входить в разные контуры.

5. Количество прямоугольников должно быть минимальным, а площадь прямоугольников максимальная.

6. Для каждого прямоугольника записываем произведение только тех переменных, которые не изменяют своего значения. Если эта переменная равна нулю, то ее записывают в инверсном виде.

7. Полученные произведения соединяем знаком логического сложения.

Контрольные вопросы:

1. Что называют минтермами и минтермами?

2.Записать функции, заданные таблицами 2.9 и 2.10 в СДНФ и СКНФ.

Таблица 2.9

3. Упростите логические функции, используя аксиомы тождества и законы алгебры логики:

a)

c)

Логические элементы

Студент должен

Знать:

· Таблицы логических состояний для основных функциональных логических схем;

· Основные базисы построения логических схем.

Уметь:

· Определять логические состояния на выходах цифровых схем по известным состояниям на входах;

· Выполнять логическое проектирование в базисах микросхем;

· Выбирать микросхему по справочнику, исходя из заданных параметров и условий использования.

Принцип логического устройства базируется в ИМС на работе биполярных транзисторов в режиме ключа (либо замкнут, либо разомкнут).


Логическое действие осуществляется как с одной (одновходовый логический элемент) так и с множеством (многовходовый логический элемент) входных переменных.

При работе логических устройств используются три основных действия согласно алгебры Буля – «И», «ИЛИ», «НЕ».

Логическая функция может быть выражена словесно, в алгебраической форме, таблицей истинности, называемой переключательной таблицей, с помощью временных диаграмм. Рассмотрим все варианты представления логических функций.

Все логические функции задаются либо в виде формулы, либо в виде таблицы значений. Иногда бывает нужно определить простейшую форму записи этой функции с минимальным количеством элементарных логических функций И, ИЛИ, НЕ для удобства работы. Для этого используются все рассмотренные операции начиная с №4 и методы Квайна и Вейча.

Метод Квайна позволяет найти простейшую нормальную дизъюнктивную форму логического выражения, т.е. записать логическое выражение в виде дизъюнкции или конъюнкции, при этом знак инверсии может стоять только над одним аргументом или не стоять вообще. Алгоритм дается в специальной литературе.

Метод Вейча (карты Карно)

В этом методе для изображения функции n переменных рисуется специальная таблица, которая содержит 2 n клеток. В каждой клетке ставится соответствие одному из наборов n переменных. В клетке записывается значение, принимаемое функцией при этом наборе аргументов. Все клетки, соответствующие наборам содержащие некоторую переменную без знака инверсии образуют область из 2 n -1 клеток. Эта область называется областью данной переменной (например, область переменной х). Остальные клетки образуют область этой инверсной переменной. Возможные наборы аргументов распределены по клеткам таким образом, чтобы границы областей всех переменных и их инверсии были четки, а принадлежность любой клетки к той или иной область зрительно легко выявлялась.

1) Функция одной переменной:

2) Функция двух переменных:

3) Диаграмма для дизъюнкции:

4) Диаграмма для конъюнкции:

5) Для трех аргументов:

6) Для четырех аргументов:

Можно минимизировать заданное логическое выражение, объединив в группы стоящие рядом единицы и при этом исключать ту переменную, которая переходит из прямого в инверсное состояние. Объединять можно не только по вертикали и горизонтали, но и по краям, так как в общем случае карта Карно образует тор. Пример:

б)

При проектировании цифровых автоматов широко используются методы минимизации булевых функций, позволяющие получать экономичные схемы. Общая задача минимизации булевых функций может быть сформулирована следующим образом: найти аналитическое выражение заданной булевой функции в форме, содержащей минимально возможное число букв.

В основе методов минимизации лежит операция склеивания (алгоритм объединения соседний двоичных чисел):

где А - элементарная конъюнкция.

В выражении слагаемые являются соседними двоичными числами, которые отличаются друг от друга только одним разрядом. При выполнении операции склеивания над двумя соседними числами из набора исключается одна переменная, которая отличает одно число от другого, над четырьмя попарно соседними числами - две переменные, над восемью - три переменные и т.д.

Минимальной дизъюнктивной нормальной формой (МДНФ) булевой функции называется ДНФ, содержащая наименьшее число букв (по отношению ко всем другим ДНФ, представляющим заданную булеву функцию).

Минимизировать функции, то есть находить наиболее простое выражение для исходной функции можно различными методами. Все они практически различаются лишь на первом этапе - этапе получения сокращенной ДНФ. Следует отметить, что, к сожалению, поиск МДНФ всегда связан с некоторым перебором решений. Рассмотрим некоторые из них.

Минимизация сложных логических выражений с помощью матрицы Карно

Дли реализации алгоритма объединения необходимо из всей совокупности обязательных конституентов в совершенной дизъюнктивной нормальной форме функции алгебры логики отыскать соседние. Для отыскания соседних конституентов используются матрицы Карно, решетка соседних чисел, таблицы соседних конституентов.

Матрицы Карно целесообразно использовать для минимизации ФАЛ на наборах из 2,3,4,5 и 6 переменных. Номера столбцов в матрицах Карно образуют младшие разряды, а номера строк - старшие разряды наборов. Номера клеток составляются из номеров строк и столбцов и соответствуют наборам переменных.

Рассмотрим матрицу Карно для функции алгебры логики на наборах из 4-х переменных (табл. 1).

Таблица 1. Матрица Карно

Столбцы и строки в этой матрице обозначены двоичными соседними числами: 00-0I-II-I0. Поэтому номера смежных по горизонтали и вертикали клеток, а также крайних в строках и столбцах клеток являются соседними числами, например:

клетки с номерами и;

клетки с номерами;

клетки с номерами;

клетки с номерами.

Для минимизации функции алгебры логики, заданной в совершенной дизъюнктивной нормальной форме, с помощью матрицы Карно необходимо: подготовить матрицу Карно, вписав в клетки, соответствующие обязательным конституентам, единицы, объединить клетки с единицами в «подкубы», записать минимизированную функции алгебры логики в дизъюнктивной нормальной форме.

В «подкубы» объединяются:

  • - две клетки с номерами, являющимися соседними числами, при этом исключается одна переменная;
  • - четыре клетки (строка, столбец, квадрат, угловые клетки), при этом исключается две переменные;
  • - восемь клеток (две соседних или крайних строки (столбца)), при этом исключается три переменные.

Для обеспечения исключения возможно большего количества переменных размеры «подкубов» должны быть как можно больше, а число их как можно меньше. С этой целью можно одну и ту же клетку с единицей использовать несколько раз, включая в различные «подкубы». Число слагаемых в минимизированной функции алгебры логики равно числу подкубов и клеток с единицами, не объединенных в подкубы.

Пусть необходимо минимизировать следующую функцию алгебры логики:

Матрица Карно, заполненная в соответствии с этой формулой, может быть представлена в виде таблицы 2:

Таблица 2. Матрица Карно

В этой матрице можно выделить два двухклеточных подкуба. В результате минимизации будет получена следующая функция алгебры логики:

Метод Квайна

Для получения минимальной формы логической функции необходимо в совершенной дизъюнктивной нормальной форме функции (СДНФ) произвести все возможные склеивания и поглощения так, что в результате будет получена сокращенная дизъюнктивная нормальная форма функции. (ДНФ).Сокращенная ДНФ в общем случае может содержать лишние простые импликанты, которые необходимо выявить на втором этапе минимизации.

На первом этапе выполняется переход от функции, заданной в форме ДНФ, к сокращенной ДНФ. Суть метода заключается в последовательном выполнении всех возможных склеиваний и затем всех поглощений, что приводит к сокращенной ДНФ. Метод применим к совершенной ДНФ. Из соотношения поглощения следует, что произвольное элементарное произведение поглощается любой его частью. Для доказательства достаточно показать, что произвольная простая импликанта р = xi1 xi2 ... xin может быть получена. В самом деле, применяя к р операцию развертывания (обратную операции склеивания):

по всем недостающим переменным x ik , ..., xim исходной функции f, получаем совокупность S конституент единицы. При склеивании всех конституент из S получим импликанту р. Последнее очевидно, поскольку операция склеивания обратна операции развертывания. Множество S конституент обязательно присутствует в совершенной ДНФ функции f поскольку р - ее импликанта.

В результате выполнения склеивания получается конъюнкция n-1 ранга, а конъюнкции остаются в исходном выражении и участвуют в сравнении с другими членами СДНФ. Таким образом, удается снизить ранг термов.

Склеивание и поглощение выполняются до тех пор, пока имеются члены, не участвовавшие в попарном сравнении. Термы, подвергшиеся операции склеивания, отмечаются. Неотмеченные термы представляют собой простые импликанты и включаются в сокращенную ДНФ. Все отмеченные конъюнкции ранга n-1 подвергаются вновь операции склеивания до получения термов n-2 ранга и так далее до тех пор, пока количество неотмеченных конъюнкций больше 2. В результате выполнения первого этапа получена сокращенная ДНФ.

Полученное логическое выражение не всегда оказывается минимальным. На втором этапе переходят от сокращенной ДНФ к тупиковым ДНФ и среди них выбирают МДНФ.

Для формирования тупиковых ДНФ строится импликантная таблица (матрица), строки которой отмечаются простыми импликантами сокращенной ДНФ, а столбцы конститутиентами единицы исходной СДНФ. В строке напротив каждой простой импликанты ставится метка под теми наборами (конститутиентами единицы), на которых она принимает значение 1. Соответствующие конститутиенты поглощаются (покрываются) данной простой импликантой.

Из общего числа простых импликант необходимо отобрать их минимальное число, исключив лишние. Формирование тупиковых форм и выбор минимального покрытия начинается с выявления обязательных простых импликант, то есть таких, которые (и только они) покрывают некоторый исходный набор. Рассмотрим на примере минимизации логической функции:

f СДНФ = V (1,2,5,6,7)=x1 x2 x3 + x1 x2 x3 + x1 x2 x3 + x1 x2 x3 + x1 x2 x3

1 2 3 4 5

Выполним операцию склеивания:

  • 1 - 3 (x1 ) x2 x3 1
  • 2 - 4 (x1 ) x2 x3 2
  • 3 - 5 (x2 ) x1 x3 3
  • 4 - 5 (x3 ) x1 x2 4

В результате выполнения первого шага склеивания получаем четыре новые конъюнкции, простых импликант не выявлено. Полученные конъюнкции более не склеиваются и образуют сокращенную ДНФ.

f сокр СДНФ =x2 x3 + x2 x3 + x1 x3 + x1 x2

Для выявления обязательных простых импликант и фрормирования на их основе минимального покрытия строится импликантная таблица (таблица 3). В строках импликантгой таблицы записываются простые импликанты, а в столбцах конституэнты единицы. Звездочка ставится если простая импликанта покрывает контитуэнту.

Таблица 3. Импликантная таблица

x 1 x2 x3

X 1 x2 x3

x 1 x2 x3

x 1 x2 x3

x 1 x2 x3

Простые импликанты являются обязательными так как только они покрывают конституэнтыи включаются в минимальное покрытие. Остается одна непокрытая конституэнта x1 x2 x3 которая может быть покрыта одной из двух оставшихся простых импликант. Это приводит к получению двух тупиковых форм.

Метод Блейка - Порецкого

Метод позволяет получать сокращенную ДНФ булевой функции f из ее произвольной ДНФ. Базируется на применении формулы обобщенного склеивания:

справедливость которой легко доказать. Действительно,

Следовательно,

В основу метода положено следующее утверждение: если в произвольной ДНФ булевой функции f произвести все возможные oбобщенные склеивания, а затем выполнить все поглощения, то в результате получится сокращенная ДНФ функции f.

Рассмотрим пример. Пусть булева функция f задана произвольной ДНФ.

Необходимо используя метод Блейка - Порецкого получить сокращенную ДНФ функции f. Проводим обобщенные склеивания. Легко видеть, что первый и второй элемент исходной ДНФ допускают обобщенное склеивание по переменной х 1 . В результате склеивания получим:

Первый и третий элемент исходной ДНФ допускают обобщенное склеивание как по переменной х 1 , так и по х2 . После склеивания по x1 имеем:

После склеивания по x 2 имеем:

Второй и третий элемент ДНФ допускают обобщенное склеивание по переменной х 2 . После склеивания получаем:

Выполнив последнее обобщенное склеивание, приходим к ДНФ:

После выполнения поглощений получаем:

Попытки дальнейшего применения операции обобщенного склеивания и поглощения не дают результата. Следовательно, получена сокращенная ДНФ функции f. Далее задача поиска минимальной ДНФ решается с помощью импликантной матрицы точно так же, как в методе Квайна.

Минимизация не полностью определенных ФАЛ

Если при синтезе логической схемы, реализующей некоторую ФАЛ n переменных, окажется, что некоторые наборы из общего числа 2n никогда не смогут появиться на входах схемы, то данная логическая функция не определена на этих наборах. Тогда 2n наборов переменных можно подразделить на три группы: наборы, на которых функция принимает единичное значение L, нулевое значение D и группа наборов, на которых функция не определена N (неопределенные наборы). ФАЛ, содержащая неопределенные наборы, называется неполностью или частично определенной. Неопределенные наборы могут быть использованы для улучшения качества минимизации. При этом неопределенные наборы (при минимизации, например, картами Вейча, Карно) могут участвовать в образовании контуров как с единичными, так и с нулевыми наборами. Это приводит к формированию более простой минимизированной логической функции.

Универсальным методом минимизации является использование законов и соотношений алгебры логики, которые позволяют проводить минимизацию ФАЛ при любом числе переменных.

Похожие статьи