Различные формы записи задачи линейного программирования. Приведение общей задачи лп к каноническому виду

05.08.2019

Любую задачу линейного программирования можно свести к задаче линейного программирования в канонической форме. Для этого в общем случае нужно уметь сводить задачу максимизации к задаче минимизации; переходить от ограничений неравенств к ограничениям равенств и заменять переменные, которые не подчиняются условию неотрицательности. Максимизация некоторой функции эквивалента минимизации той же функции, взятой с противоположным знаком, и наоборот.

Правило приведения задачи линейного программирования к каноническому виду состоит в следующем:

  • если в исходной задаче требуется определить максимум линейной функции, то следует изменить знак и искать минимум этой функции;
  • если в ограничениях правая часть отрицательна, то следует умножить это ограничение на -1;
  • если среди ограничений имеются неравенства, то путем введения дополнительных неотрицательных переменных они преобразуются в равенства;
  • если некоторая переменная x j не имеет ограничений по знаку, то она заменяется (в целевой функции и во всех ограничениях) разностью между двумя новыми неотрицательными переменными:
    x 3 = x 3 + - x 3 - , где x 3 + , x 3 - ≥ 0 .

Пример 1 . Приведение к канонической форме задачи линейного программирования:

min L = 2x 1 + x 2 - x 3 ;
2x 2 - x 3 ≤ 5;
x 1 + x 2 - x 3 ≥ -1;
2x 1 - x 2 ≤ -3;
x 1 ≤ 0; x 2 ≥ 0; x 3 ≥ 0.

Введем в каждое уравнение системы ограничений выравнивающие переменные x 4 , x 5 , x 6 . Система запишется в виде равенств, причем в первое и третье уравнения системы ограничений переменные x 4 , x 6 вводятся в левую часть со знаком "+", а во второе уравнение переменная x 5 вводится со знаком "-".

2x 2 - x 3 + x 4 = 5;
x 1 + x 2 - x 3 - x 5 = -1;
2x 1 - x 2 + x 6 = -3;
x 4 ≥ 0; x 5 ≥ 0; x 6 ≥ 0.

Свободные члены в канонической форме должны быть положительными, для этого два последних уравнения умножим на -1:

2x 2 - x 3 + x 4 = 5;
-x 1 - x 2 + x 3 + x 5 = 1;
-2x 1 + x 2 - x 6 = 3.

В канонической форме записи задач линейного программирования все переменные, входящие в систему ограничений, должны быть отрицательными. Допустим, что x 1 = x 1 " - x 7 , где x 1 " ≥ 0, x 7 ≥ 0 .

Подставляя данное выражение в систему ограничений и целевую функцию и, записывая переменные в порядке возрастания индекса, получим задачу линейного программирования, представленную в канонической форме:

L min = 2x 1 " + x 2 - x 3 - 2x 7 ;
2x 2 - x 3 + x 4 = 5;
-x 1 " - x 2 + x 3 + x 5 + x 7 = 1;
-2x 1 " + x 2 - x 6 + 2x 7 = 3;
x 1 " ≥ 0; x i ≥ 0, i=2, 3, 4, 5, 6, 7.

Условие оптимальности базисного плана канонической задачи ЛП. Симплекс-метод и его сходимость.

Симплексный метод является универсальным, так как позволяет решать практически любую задачу линейного программирования, записанную в каноническом виде.

Идея симплексногометода последовательного улучшения плана, заключается в том, что, начиная с некоторого исходного опорного решения, осуществляется последовательно направленное перемещение по опорным решениям задачи к оптимальному.

Значение целевой функции при этом перемещении для задач на максимум не убывает.

Так как число опорных решений конечно, то через конечное число шагов получим оптимальное опорное решение.

Опорным решением называется базисное неотрицательное решение.

Алгоритм симплексного метода

1. Математическая модель задачи должна быть канонической. Если она неканоническая, то ее надо привести к каноническому виду.

2. Находим исходное опорное решение и проверяем его на оптимальность.
Для этого заполняем симплексную таблицу 1.
Все строки таблицы 1-го шагазаполняем по данным системы ограничений и целевой функции.

Возможны следующие случаи при решении задач на максимум:

1. Если все коэффициенты последней строки симплекс-таблицы Dj ³ 0, то найденное

решение оптимальное.

2 Если хотя бы один коэффициент Dj £ 0, но при соответствующей переменной нет ни одного положительного оценочного отношения, то решение задачи прекращаем , так как F(X) ® ¥ , т.е.целевая функция не ограничена в области допустимых решений.

Если хотя бы один коэффициент последней строки отрицателен, а при соответствующей переменной есть хотя бы одно положительное оценочное отношение, то нужно перейти к другому опорному решению.

4. Если отрицательных коэффициентов в последней строке несколько, то в столбец базисной переменной (БП) вводят ту переменную , которой соответствует наибольший по абсолютной величине отрицательный коэффициент.

5. Если хотя бы один коэффициент Dk < 0 ,то k - тый столбец принимаем за ведущий.

6. За ведущую строку принимаем ту, которой соответствует минимальное отношение свободных членов bi к положительным коэффициентам ведущего, k – того столбца.

7. Элемент, находящийся на пересечении ведущих строк и столбца, называется ведущим элементом.

Заполняем симплексную таблицу 2:

· заполняем базисный столбец нулями и единицей

· переписываем ведущую строку, разделив ее на ведущий элемент

· если ведущая строка имеет нули, то в следующую симплекс-таблицу можно перенести соответствующие столбцы

· остальные коэффициенты находим по правилу “прямоугольника”

Получаем новое опорное решение, которое проверяем на оптимальность:

Если все коэффициенты последней строки Dj ³ 0, то найденное решение максимальное.

Если нет, то заполняем симплексную таблицу 8-го шага и так далее.

Если целевая функция F(X) требует нахождения минимального значения , то критерием оптимальности задачи является неположительность коэффициентов Dj при всех j = 1,2,...n.

Сходимость симплекс-метода. Вырожденность в задачах ЛП. Важнейшим свойством любого вычислительного, алгоритма является сходимость, т. е. возможность получения в ходе его применения искомых результатов (с заданной точно­стью) за конечное число шагов (итераций).

Легко заметить, что проблемы со сходимостью симплекс-ме­тода потенциально могут возникнуть на этапе выбора значения r (п. 2") в случае, когда одинаковые минимальные значения от­ношения

будут достигнуты для нескольких строк таблицы Т (q) одновре­менно. Тогда на следующей итерации столбец b(β(q+1)) будет со­держать нулевые элементы.

Задачи МП

Общей ЗЛП называют <,=,>=}bi (i=1,n) (2) при условии xj>

Симметрической < либо = и не отрицательных переменных и задача минимизации функции (1) при линейных ограничениях в неравенствах со знаком > Канонической смешенной .

min f(x) = -max(-f(x))

<=b (5)соответствует вполне определенное решение х1…хn, xn+1 уравненияa1x1+…+anxn+xn+1=b (6) при условии что хn+1>


Геометрическая интерпретация целевой функции и ограничения ЗЛП. Геометрическая формулировка ЗЛП.

Пусть дана задача f=c1x1+c2x2-max (1)

a11x1+a12x2<=b1 }

am1x1+am2x2<=bm}

x1>=0, x2>=0 (3)

План задачи (х1,х2) – точка на плоскости. Каждое неравенство с-мы 2 предст. собой полуплоскость. Полуплоскость –выпуклое множество. Выпуклым наз-ся множество в которым точки отрезка соединяющие (х1 и х2) принадлежащие этому множеству то же принадлежат множеству. С-ма 2 представляет собой пересечение полуплоскостей. При пересечении могут получиться:

1)выпуклая многоугольная замкнутая область.

2) выпуклая открытая многоугольная область

3) единственная точка

4) пустое множество

5) луч и отрезок

Геометрическая интерпретация целевой функции: ф-ция 1 представляет собой семейство параллельных прямых, которые наз-ют линиями уровня(линиями постоянного значения целевой функции). Частные производные функции по х1 и х2 показывают скорость возрастания целевой функции вдоль координат осей. Вектор-градиент показывает направление найскорейшего возрастания целевой функции.Для задачи 1-3 вектор-градиент = (с1;с2) Выходит из точки (0,0) и направлен в точку с координатами (с1;с2). Вектор-градиент перпендикулярен линиям уровня. Пересечение полуплоскастей принято наз-ть областью допустимых рещений(ОДР) .


Основная теорема ЛП. Принципиальная схема решения ЗЛП, вытекающая из этой теоремы.

Если ЗЛП имеет решение, то целевая функция достигает экстремального значения хотя бы в одной из крайних точек многогранника плана. Если целевая функция достигает экстремального значения более чем в одной крайней точке то она достигает одно и то, являющейся их выпуклой линейной комбинацией.же значения в любой точке. При решении ЗЛП в ручную удобно использовать табличную запись.

БП СП -Xm+1 -Xm+2 -Xn
х1 b1o b11 b12 b1n-m
х2 b2o b21 b22 b2n-m
хm bm bm1 bm2 bmn-m
f boo bo1 bo2 bon-m

Алгоритм симплекс-метода.

1. привести модель задачи к канонической форме;

2. найти начальный опорный план;

3. записать задачу в симпл. таблицу;

5. перейти к новому опорному плану, к новой симп. таблице. Для того чтобы перейти к новому опорному плану достаточно заменить одну базисную переменную свободной. Переменную, включаемую в базис и соответствующей ей разрешающий столбец определяют по наибольшему по модулю отрицательному элементу f-строки. Переменную, исключающую из базиса и соответствующую ей разрешающую строку определяют по наименьшему симплексному отношению, т.е. отношению элементов единичного столбца к соответствующему элементу разрешающего столбца. Симплексное отношение – величина неотрицательная. На пересечении разрешающей строки и разрешающего столбца расположен разрешающий элемент, относительно которого выполняется симплексное преобразование по след. правилу: 1. элементы разрешающей строки делятся на разрешающий элемент; 2. элементы разрешающего столбца делятся на разрешающий элемент и меняют знак на противоположный; 3. остальные элементы таблицы перещитываются по правилу прямоугольника.:



bij bis bkj=(bkj*bis-bij*bks)/bi

Ая теорема двойственности.

если одна из двойственных задач имеет оптим план, то и другая решима, т.е. имеет опт.план. При этом экстремальные значен.целевых функций совпадают (j=от 1 до n) Σcjxj*= (i=от 1 до m)Σbiyi* если в исходн. задаче целевая функция неограничена на множестве планов, то в двойственной задаче система ограничений несовместна.


Теорема о ранге матрицы ТЗ.

Ранг матрицы А трансп.задачи на единицу меньше числа уравнений: r(A)=m+n-1.


39. Алгоритм построения начального опорного плана ЗЛП.

Для нахождения начального опорного плана можно предложить следующий алгоритм:

1. записать задачу в форме жордановой таблицы так, чтобы все элементы столбца свободных членов были неотрицательными, т.е. выполнялось неравенство аio>=0 (i=1,m). Те уравнения с-мы, в которых свободные члены отрицательны, предварительно умножаются на -1.

-x1 ….. -xn
0= a1o a11 …. a1n
….. ….. ………………………..
0= amo am1 ….. amn
f= -c1 …. -cn

Таблицу преобразовывать шагами жордановых исключений, замещая нули в левом столбце соответствующими х. При этом на каждом шаге разрешающим может быть выбран любой столбец, содержащий хотя бы один положительный элемент. Разрешающая строка определяется по наименьшему из отношений свободных членов к соответствующем положительным элементам разрешающего столбца. Если в процессе исключений встретится 0-строка, все элементы которой- нули, а свободный член отличен от нуля, то с-ма ограничительных уравнений решений не имеет. Если же встретится 0-строка, в которой, кроме свободного члена, других положительных элементов нет, то с-ма ограничительных уравнений не имеет неотрицательных решений Если с-ма ограничительных уравнений совместна , то через некоторое число шагов все нули в левом столбце будут замещены х и тем самым получен некоторый базис, а следовательно, и отвечающий ему опорный план.

40. Алгоритм построения оптимального опорного плана ЗЛП.

Начальный опорный план Хо исследуется на оптимальность.

Если в f-строке нет отрицательных элементов (не считая свободного члена), -план оптимален. Если в f- строке нет также и нулевых элементов, то оптимальный план единственный; если же среди элементов есть хотя бы один нулевой, то оптимальных планов бесконечное множество. Если в f-строке есть хотя бы один отрицательный элемент, а в соответствующем ему столбце нет положительных, то целевая функция не ограничена в допустимой области. Задача не разрешима. Если в f- строке есть хотя бы один отрицательный элемент, а в каждом столбце с таким элементом есть хотя бы один положительный, то можно перейти к новому опорному плану, более близкому к оптимальному. Для этого столбец с отриц-ом элементом в f-строке берут за разрешающий ; опред-ют по минимальному симплексному отношению разрешающую строку и делают шаг жорданова исключения. Полученный опорный план вновь исследуется на оптимальность. Это повторяется до тех пор, пока не будет найден оптимальный опорный план либо установлена неразрешимость задачи.


Алгоритм метода Гомори.

1.Симплекс-методом находят оптимальный план задачи. Если все компоненты оптимального плана целые, то он –оптимальный. В противном случае переходят к пункту 2

2.Среди нецелых компонент следует выбрать ту, у которой дробная часть является наибольшей и по соответствующей этой строке симплексной таблицы сформулировать правильное отсечение по формуле

(n-m,s=1)∑ {αkm+1}Xm+1≥{βk}

3.Сформулированное неравенство преобразовать в эквивалентное нулевое равенство и включить в симплексную таблицу с нецелочисленным оптимальным планом

4.Полученную расширенную задачу решают симплекс-методом. Если полученный план не является целочисленным нова переходят к пункту 2.

Если в процессе решения появится строка с нецелым свободным членом и целыми остальными коэффициентами, то соответствующее уравнение не имеет решения в целых числах. В таком случае и исходная задача неразрешима в целых числах.Метод Гомори имеет ограниченое применение. С его помощью целесообразно решать небольшие задачи, т.к. число интераций может быть очень большим.


Различные формы записи ЗЛП (общая, каноническая, симметрическая)

Задачи МП : определение оптимального плана, опред-е оптимального объема выпуска продукции, опред-е оптим-го сочитания посевов с/хоз-ых культур, формир-е оптим-го пакета активов, максимиз-щий прибыль банка и т.д.

Общей ЗЛП называют задачу максимизации (минимизации) линейной функции f=Σcj*xj-max(min) (1) при линейных ограничениях ∑aij *xj{=<,=,>=}bi (i=1,n) (2) при условии xj>=0(j=1,n1), xj-произвольное (j=n1+1,n)(3) где cj,aij, bi-постоянные числа.

Симметрической формой записи ЗЛП наз-ся задача максимизации функции (1) при линейных ограничениях в неравенствах со знаком < либо = и не отрицательных переменных и задача минимизации функции (1) при линейных ограничениях в неравенствах со знаком > либо = и неотрицательных переменных. Канонической формой записи ЗЛП наз-ся задача максимальной функции (1) при линейных ограничениях равенствах и неотрицательных переменных. Любая другая форма называется смешенной .

min f(x) = -max(-f(x))

Преобразование нерав-ва в уравнение и наоборот осущ-ся на основе Леммы: всякому решению х1…хn нерав-ва a1x1+…+anxn<=b (5)соответствует вполне определенное решение х1…хn, xn+1 уравненияa1x1+…+anxn+xn+1=b (6) при условии что хn+1>=0(7) и наоборот. Всякому решению x1…xn,xn+1 уравнения 6 и неравенства 7 соответствует решение x1…xn неравенства 5.

Чтобы от зад сим формы перейти к зад канонич вида, необходимо ввести балансовые (выравнивающие) переменные. Это основано на теореме о неравенстве: любое нерав-во можно представить в виде ур-я или простейшего нерав-ва.

задачи линейного программирования

2.1. Определение и формы записи

В случае, когда все ограничения являются уравнениями и все переменные удовлетворяют условию неотрицательности, задачу линейного программирования называют канонической. Она может быть представлена в координатной, векторной или матричной форме записи.

а) каноническая задача ЛП в координатной форме имеет вид:

,
.

Данную задачу можно записать, используя знак суммирования:

,

,

,
,
.

б) каноническая задача ЛП в векторной форме имеет вид: ,

,

где
;
;

,
;;
.

в) каноническая задача ЛП в матричной форме имеет вид:

,
,

где
,,.

2.2. Приведение общей задачи линейного

программирования к канонической форме

При составлении математических моделей экономических задач ограничения в основном формируются в системы неравенств. Поэтому необходимо уметь переходить от них к системам уравнений. Например, рассмотрим линейное неравенство

и прибавим к его левой части некоторую величину
такую, чтобы неравенство превратилось в равенство.

Неотрицательная переменная
называется дополнительной переменной. Следующая теорема даёт основание для возможности такого преобразования.

Теорема 2.2.1. Каждому решению
неравенства (2.2.1) соответствует единственное решениеуравнения (2.2.2) и неравенства
, и, наоборот, каждому решению уравнения (2.2.2)с
соответствует решение
неравенства (2.2.1).

Доказательство. Пусть
решение неравенства (2.2.1). Тогда. Возьмём число
. Ясно, что
. Подставив в уравнение (2.2.2), получим

Первая часть теоремы доказана.

Пусть теперь векторудовлетворяет уравнению (2.2.2) с
, т.е.. Отбрасывая в левой части последнего равенства неотрицательную величину
, получаем, и т.д.

Таким образом, доказанная теорема фактически устанавливает возможность приведения всякой задачи ЛП к каноническому виду. Для этого достаточно в каждое ограничение, имеющее вид неравенства, ввести свою дополнительную неотрицательную переменную. Причём, в неравенства вида (1.2.1) эти переменные войдут со знаком « + », а в неравенствах вида (1.2.2) – со знаком « – ». Дополнительные переменные вводятся в целевую функцию с нулевыми коэффициентами и поэтому на её значение не влияют.

Замечание. В дальнейшем мы будем излагать симплекс-метод для канонической задачи ЛП при исследовании целевой функции на минимум. В тех задачах, где требуется найти максимум
, достаточно рассмотреть функцию
, найти её минимальное значение, а затем, меняя знак на противоположный, определить искомое максимальное значение
.

3. Графический метод решения задач

линейного программирования

3.1. Общие понятия, примеры

В тех случаях, когда в задаче ЛП лишь две переменные, можно использовать для решения графический метод. Пусть требуется найти максимальное (минимальное) значение функции
при ограничениях

(3.1.1)

Данный метод основывается на возможности графического изображения области допустимых решений задачи, т.е. удовлетворяющих системе (3.1.1), и нахождения среди них оптимального решения. Область допустимых решений задачи строится как пересечение (общая часть) областей решений каждого из заданных ограничений (3.1.1). Каждое из них определяет полуплоскость с границей
,
. Для того, чтобы определить, какая из двух полуплоскостей является областью решений, достаточно координаты какой-либо точки, не лежащей на прямой, подставить в неравенство: если оно удовлетворяется, то областью решений является полуплоскость, содержащая данную точку, если же неравенство не удовлетворяется, то областью решений является полуплоскость, не содержащая данную точку.

Пересечение этих полуплоскостей образует некоторую область, называемую многоугольником решений, который является выпуклым множеством. (Допустим, что система ограничений совместна, а многоугольник её решений ограничен.) Для нахождения среди допустимых решений оптимального используются линии уровня и опорные прямые.

Линией уровня называется прямая, на которой целевая функцияпринимает постоянное значение. Уравнение линии уровня имеет вид

, где
. Все линии уровня параллельны между собой. Их нормаль
.

Опорной прямой называется линия уровня, которая имеет хотя бы одну общую точку с областью допустимых решений, по отношению к которой эта область находится в одной из полуплоскостей (рис. 1).

Значения
возрастают в направлении вектора
. Поэтому необходимо передвигать линию уровня
в направлении этого вектора параллельно самой себе до опорной прямойL 1 в задаче на максимум и в противоположном направлении – в задаче на минимум (до опорной прямойL 2).

Приведём решение примера 1.1. Напомним, что нужно найти максимум функции
при ограничениях

Решение. Строим область допустимых решений. Нумеруем ограничения задачи. В прямоугольной декартовой системе координат (рис. 2) строим прямую

, соответствующую ограничению (1). Находим, какая из полуплоскостей, на которые эта прямая делит всю координатную плоскость, является областью решений неравенства (1).

Для этого достаточно координаты какой - либо точки, не лежащей на прямой, подставить в неравенство. Так как прямая не проходит через начало координат, подставляем
в первое ограничение. Получим строгое неравенство
. Следовательно, точка
лежит в полуплоскости решений. Аналогично строим прямую

и область решений ограничения (2). Находим общую часть полуплоскостей решений, учитывая ограничения (3). Полученную область допустимых решений выделим на рис.2 тёмным цветом.

Строим линию уровня
и вектор
, который указывает направление возрастания функциии перпендикулярен прямой

. Линию уровня
перемещаем параллельно самой себе в направлении
до опорной прямой. Получим, что максимума целевая функция достигнет в точке
точке пересечения прямыхи. Решая систему из уравнений этих прямых
, получим координаты точки
. Следовательно,, а
,
оптимальное решение.

Пример 3.1. Найти минимум функции
при системе ограничений

Решение. Строим область допустимых решений (см. рис.3), вектор
и одну из линий уровня
. Перемещаем линию уровня в направлении, противоположном
, так как решается задача на отыскание минимума функции. Опорная прямая проходит в этом случае через точку А (рис.3), координаты которой найдём из решения системы

Итак,
. Вычисляем.

Замечание. В действительности от вида области допустимых решений и целевой функции
задача ЛП может иметь единственное решение, бесконечное множество решений или не иметь ни одного решения.

Пример 3.2. Найти минимум функции
при ограничениях

Решение. Строим область допустимых решений, нормаль линий уровня
и одну из линий уровня, имеющую общие точки с этой областью. Перемещаем линию уровняв направлении, противоположном направлению нормали, так как решается задача на отыскание минимума функции. Нормаль линий уровня
и нормаль граничной прямой, в направлении которой перемещаются линии уровня, параллельны, так как их координаты пропорциональны
. Следовательно, опорная прямая совпадает с граничной прямойобласти допустимых решений и проходит через две угловые точки этой областии(рис.4).

Задача имеет бесконечное множество оптимальных решений, являющихся точками отрезка
. Эти точки
,
находим, решая соответствующие системы уравнений:


;
;

,
;
,
;

;
.

Вычисляем .

Ответ:
при
,
.

Пример 3.3. Решить задачу линейного программирования

Решение. Строим область допустимых решений, нормаль
и одну из линий уровня. В данной задаче необходимо найти максимум целевой функции, поэтому линию уровняперемещаем в направлении нормали. Ввиду того, что в этом направлении область допустимых решений не ограничена, линия уровня уходит в бесконечность (рис.5).

Задача не имеет решения вследствие неограниченности целевой функции.

Ответ:
.

В исходной постановке ЗЛП могут допускать различные формы записи. Так, в одних задачах требуется максимизировать целевую функцию, в других - минимизировать; некоторые линейные ограничения могут иметь вид равенств, другие - неравенств и т.д.

Для единообразия записи ЗЛП вводится так называемая каноническая форма записи.

Говорят, что ЗЛП записана в канонической форме, если она имеет следующий вид:

Отметим следующие особенности канонического вида:

1) требуется минимизировать целевую функцию;

2) все линейные ограничения, кроме требований неотрицательности переменных, имеют вид равенств;

    на все переменные наложены требования неотрицательности.

Покажем, что любую ЗЛП можно привести к каноническому виду.

1) Если в ЗЛП требуется максимизировать целевую функцию f, то положим g = - f и потребуем минимизировать функцию g. Получится новая ЗЛП, которая эквивалентна исходной в том смысле, что каждое оптимальное решение исходной задачи будет оптимальным решением новой задачи и наоборот.

2) Предположим, что в ЗЛП есть линейное ограничение вида

Заменим такое ограничение следующими двумя ограничениями:

где z - новая переменная, которая в целевую функцию вводится с коэффициентом 0 (иначе говоря, переменная z не вводится в целевую функцию). Значение переменной z можно не учитывать после решения новой задачи.

Аналогично, ограничение вида заменяется двумя ограничениями:

3) Предположим, что в ЗЛП не ко всем переменным предъявлено требование неотрицательности. Тогда каждую, переменную , на которую не наложено требование неотрицательности, представим в виде разности двух неотрицательных переменных:

Каждое вхождение переменной в целевую функцию или ограничения заменим разностью
. Решив новую задачу с помощью (2.6), вернемся к прежним переменным.

Указанными приемами любая ЗЛП приводится к каноническому виду.

Пример. Привести к каноническому виду

Проделаем описанные действия.

Теперь получим ЗЛП в каноническом виде:

2.7. Понятие опорного плана злп.

Пусть ВЛП задана в каноническом виде (2.3 - 2.5). Предположим, что система уравнений (2.4) приведена к жордановой форме с неотрицательными правыми частями:

(2.6)

где
.

Приравняв к нулю свободные переменные, получим базисное решение системы (2.4)

В силу условия
набор значений переменных (2.7) удовлетворяет и ограничениям (2.5). Поэтому (2.6) являетсядопустимым решением ЗЛП .

Допустимое решение (2.7) называется базисным допустимым решением или опорным планом ЗЛП. При этом говорят, что переменные
образуют допустимый базис.

Оказывается, что если ОДР изобразить геометрически, то каждый опорный план ЗЛП соответствует вершине многогранника. Поэтому справедлива следующая теорема.

Если ЗЛП разрешима, то существует оптимальный опорный план.

3. Симплексный метод решения злп

3.1. Общая характеристика и основные этапы симплекс – метода

Основоположниками симплекс-метода являются советский математик Л.В. Канторович и американский математик Дж. Данциг.

Симплекс-методом можно решить любую ЗЛП или обнаружить ее неразрешимость. Многие специальные классы ЗЛП можно решить другими, более эффективными для этих классов методами. Однако преимущество симплекс-метода - его универсальность. Почти для всех ЭВМ разработаны стандартные программы для решения ЗЛП симплекс - методом.

Опишем общую идею симплекс-метода.

Считаем, что ЗЛП записана в каноническом виде и целевую функцию нужно минимизировать. Как мы уже знаем, оптимальный план следует искать среди опорных планов ЗЛП. Симплекс-метод не перебирает все опорные планы (что было бы часто невозможно из-за их огромного количества), а, начиная с некоторого исходного опорного плана, он последовательно переходит к другим опорным планам с уменьшением целевой функции. Симплекс-метод прекращает свою работу тогда, когда либо будет найден оптимальный опорный план, либо установлена неразрешимость задачи.

При решении ЗЛП симплекс-методом можно выделить следующие этапы:

1) приведение ЗЛП к каноническому виду;

2) приведение системы линейных уравнений к жордановой форме с неотрицательными правыми частями с одновременной проверкой на неразрешимость ЗЛП из-за противоречивости системы линейных ограничений;

3) исследование опорного плана на оптимальность;

4) исследование ЗЛП на неразрешимость из-за неограниченности снизу на ОДР целевой функции;

5) переход к новому, "лучшему" опорному плану.

Каноническая форма ЗЛП - задача линейного программирования вида ax = b где a - матрица коэффициентов, b - вектор ограничений.

Назначение сервиса . Онлайн-калькулятор предназначен для перехода ЗЛП к КЗЛП. Приведение задачи к канонической форме означает, что все ограничения будут иметь вид равенств, путем ввода дополнительных переменных.
Если на какую-либо переменную x j не наложено ограничение, то она заменяется на разность дополнительных переменных, x j = x j1 - x j2 , x j1 ≥ 0, x j2 ≥ 0.

Инструкция . Выберите количество переменных и количество строк (количество ограничений). Полученное решение сохраняется в файле Word .

Количество переменных 2 3 4 5 6 7 8 9 10
Количество строк (количество ограничений) 2 3 4 5 6 7 8 9 10
Как привести задачу линейного программирования к канонической форме

Математическая модель ЗЛП называется основной , если ограничения в ней представлены в виде уравнений при условии неотрицательности переменных.

Математическая модель называется канонической , если ее система ограничений представлена в виде системы m линейно независимых уравнений (ранг системы r=m), в системе выделен единичный базис , определены свободные переменные и целевая функция выражена через свободные переменные. При этом правые части уравнений неотрицательны (b i ≥ 0).

Переменные, входящие в одно из уравнений системы с коэффициентом один и отсутствующие в других уравнениях называются базисными неизвестными , а все другие - свободными .

Решение системы называется базисным , если в нем свободные переменные равны 0, и оно имеет вид:
X баз = (0, 0; b 1 , …, b m), f(X баз) = c 0

Базисное решение является угловой точкой множества решений системы, т.е. определяет вершину многоугольника решений модели. Среди таких решений находится и то, при котором целевая функция принимает оптимальное значение .

Базисное решение называется опорным, если оно допустимо, т.е. все правые части уравнений системы (или неравенств) положительны b i ≥ 0.

Компактная форма канонической модели имеет вид:
AX = b
X ≥ 0
Z = CX(max)

Понятие допустимого решения, области допустимых решений, оптимального решения задачи линейного программирования .
Определение 1 . Вектор X, удовлетворяющий системе ограничений ЗЛП, в том числе и условиям неотрицательности, если они имеются, называется допустимым решением ЗЛП.
Определение 2 . Совокупность всех допустимых решений образует область допустимых решений (ОДР) ЗЛП.
Определение 3 . Допустимое решение, для которого целевая функция достигает максимума (или минимума), называется оптимальным решением.

Пример №1 . Следующую задачу ЛП привести к каноническому виду: F(X) = 5x 1 + 3x 2 → max при ограничениях:
2x 1 + 3x 2 ≤20
3x 1 + x 2 ≤15
4x 1 ≤16
3x 2 ≤12
Модель записана в стандартной форме. Введем балансовые неотрицательные переменные x 3 , x 4 , x 5 , x 6 , которые прибавим к левым частям ограничений-неравенств. В целевую функцию все дополнительные переменные введем с коэффициентами, равными нулю:
В первом неравенстве смысла (≤) вводим базисную переменную x 3 . Во 2-ом неравенстве смысла (≤) вводим базисную переменную x 4 . В третьем неравенстве вводим базисную переменную x 5 . В 4-м неравенстве - базисную переменную x 6 . Получим каноническую форму модели:
2x 1 + 3x 2 + 1x 3 + 0x 4 + 0x 5 + 0x 6 = 20
3x 1 + 1x 2 + 0x 3 + 1x 4 + 0x 5 + 0x 6 = 15
4x 1 + 0x 2 + 0x 3 + 0x 4 + 1x 5 + 0x 6 = 16
0x 1 + 3x 2 + 0x 3 + 0x 4 + 0x 5 + 1x 6 = 12
F(X) = 5x 1 + 3x 2 + 0x 3 + 0x 4 + 0x 5 + 0x 6 → max

Пример №2 . Найти два опорных решения системы
x 1 + 2x 4 - 2x 5 = 4
x 3 + 3x 4 + x 5 = 5
x 2 + 3x 5 = 2

Похожие статьи