В чем измеряется скорость передачи информации. Большая энциклопедия нефти и газа

06.07.2019

Ключевые слова:

· скорость передачи данных

· биты в секунду

Скорость передачи данных – важнейшая характеристика линии связи. Изучив этот параграф, вы научитесь решать задачи, связанные с передачей данных по сети.

Единицы измерения

Вспомним, в каких единицах измеряется скорость в уже знакомых нам ситуациях. Для автомобиля скорость – это расстояние, пройденное за единицу времени; скорость измеряется в километрах в час или метрах в секунду. В задачах перекачки жидкости скорость измеряется в литрах в минуту (или в секунду, в час).

Неудивительно, что в задачах передачи данных скоростью будем называть количество данных, переданное по сети за единицу времени (чаще всего – за секунду).

Количество данных можно измерить в любых единицах количества информации: битах, байтах, Кбайтах и др. Но на практике скорость передачи данных чаще всего измеряют в битах в секунду (бит/с).

В скоростных сетях скорость обмена данными может составлять миллионы и миллиарды битов в секунду, поэтому используются кратные единицы: 1 кбит/c (килобит в секунду), 1 Мбит/c (мегабит в секунду) и 1 Гбит/c (гигабит в секунду).

1 кбит/с = 1 000 бит/с 1 Мбит/с = 1 000 000 бит/с 1 Гбит/с = 1 000 000 000 бит/с

Обратите внимание, что здесь приставки «кило-», «мега-» и «гига-» обозначают (как и в международной системе единиц СИ) увеличение ровно в тысячу, миллион и миллиард раз. Напомним, что в традиционных единицах измерения количества информации «кило-» означает увеличение в 1024 раза, «мега-» – в 1024 2 и «гига-» – в 1024 3 .

Задачи

Пусть скорость передачи данных по некоторой сети равна v бит/с. Это значит, что за одну секунду передаётся v битов, а за t секунд – v× t битов.

Задача 1 . Скорость передачи данных по линии связи 80 бит/с. Сколько байтов будет передано за 5 минут?

Решение . Как вы знаете, количество информации рассчитывается по формуле I = v× t . В данном случае v = 80 бит/с и t = 5 мин. Но скорость задана в битах в секунду , а время – в минутах , поэтому для получения правильного ответа нужно минуты перевести в секунды:

t = 5 × 60 = 300 с

и только потом выполнить умножение. Сначала получаем количество информации в битах:

I = 80 бит/c × 300 с = 24000 битов

Затем переводим его в байты:

I = 24000: 8 байтов = 3000 байтов

Ответ: 3000 байт.

Задача 2 . Скорость передачи данных по линии связи 100 бит/с. Сколько секунд потребуется на передачу файла размером 125 байтов?

Решение . Нам известна скорость передачи данных (v = 100 бит/с) и количество информации (I = 125 байтов). Из формулы I = v× t получаем

t = I : v.

Но скорость задана в битах в секунду, а количество информации – в байтах . Поэтому для того, чтобы «состыковать» единицы измерения, нужно сначала перевести количество информации в биты (или скорость в байты в секунду!):

I = 125 × 8 битов = 1000 битов.

Теперь находим время передачи:

t = 1000 : 100 = 10 с.

Ответ: 10 секунд.

Задача 3 . Какова средняя скорость передачи данных (в битах в секунду), если файл размером 200 байтов был передан за 16 с?

Решение . Нам известно количество информации (I = 200 байтов) и время передачи данных (t = 16 с). Из формулы I = v× t получаем

v = I : t.

Но объём файла задан в байтах , а скорость передачи нужно получить в битах в секунду. Поэтому сначала переведём количество информации в биты:

I = 200 × 8 битов = 1600 битов.

Теперь находим среднюю скорость

v = 1600 : 16 = 100 бит/с.

Обратите внимание, что речь идёт именно о средней скорости передачи, потому что во время обмена данными она могла изменяться.

Ответ: 100 бит/с.

1. В каких единицах измеряется скорость передачи данных в компьютерных сетях?

2. Что означают приставки «кило-», «мега-» и «гига-» в единицах измерения скорости передачи данных? Как вы думаете, почему эти приставки не такие, как в единицах измерения количества информации?

3. Какая формула используется для решения задач на скорость передачи данных?

4. Как вы думаете, в чём заключается главная причина ошибок в решении таких задач?

1. Сколько байтов информации будет передано за 24 секунды по линии связи со скоростью 1500 бит в секунду?

2. Сколько байтов информации будет передано за 15 секунд по линии связи со скоростью 9600 бит/c?

3. Сколько байтов информации передается за 16 секунд по линии связи со скоростью 256000 бит в секунду?

4. Сколько секунд потребуется на передачу файла размером 5 Кбайт по линии связи со скоростью 1024 бит/с?

5. Сколько секунд потребуется на передачу файла размером 800 байт по линии связи со скоростью 200 бит/с?

6. Сколько секунд потребуется на передачу файла размером 256 Кбайт по линии связи со скоростью 64 байта в секунду?

7. Книжка, в которой 400 страниц текста (каждая страница содержит 30 строк по 60 символов в каждой), закодирована в 8-битной кодировке. Сколько секунд потребуется для передачи этой книжки по линии связи со скоростью 5 кбит/c?



8. Сколько бит в секунду передается по линии связи, если файл размером 400 байт был передан за 5 с?

9. Сколько бит в секунду передается по линии связи, если файл размером 2 Кбайта был передан за 8 с?

10. Сколько байтов в секунду передается по линии связи, если файл размером 100 Кбайт был передан за 16 с?

Самое важное в главе 1: · Информатика изучает широкий круг вопросов, связанных с автоматической обработкой данных. · Человек получает информацию об окружающем мире с помощью органов чувств. · Данные – это зафиксированная (закодированная) информация. Компьютеры работают только с данными. · Сигнал – это изменение свойств носителя информации. Сообщение – это последовательности сигналов. · Основные информационные процессы – это передача и обработка информации (данных). · Минимальная единица измерения количества информации – это бит. Так называется количество информации, которое можно закодировать с помощью одной двоичной цифры («0» или «1»). · С помощью i битов можно закодировать 2 i разных вариантов. · 1 байт содержит 8 битов. · В единицах измерения количества информации используются двоичные приставки: 1 Кбайт = 2 10 байтов = 1024 байтов 1 Мбайт = 2 20 байтов 1 Гбайт = 2 30 байтов · Информационный объем текста определяется длиной текста и мощностью алфавита. Чем больше символов содержит алфавит, тем больше будет информационный объём одного символа (и текста в целом). · Большинство рисунков кодируется в компьютерах в растровом формате, то есть, в виде набора точек разного цвета (пикселей). Пиксель – это наименьший элемент рисунка, для которого можно задать свой цвет. · Информационный объем рисунка определяется количеством пикселей и количеством используемых цветов. Чем больше цветов используется в рисунке, тем больше будет информационный объём одного пикселя (и рисунка в целом). · Скорость передачи данных обычно измеряется в битах в секунду (бит/с). · В единицах измерения скорости передачи данных используются десятичные приставки: 1 кбит/с = 1 000 бит/c 1 Мбит/с = 1 000 000 бит/c 1 Гбит/с = 1 000 000 000 бит/c

Конечно, вместо 0 и 1 можно использовать два любых знака.

Английское слово bit – это сокращение от выражения binary digit , «двоичная цифра».

Существует и другой тип языков, к которому относятся китайский, корейский, японский языки. В них используются иероглифы , каждый из которых обозначает отдельное слово или понятие.

Английское слово pixel – это сокращение от picture element , элемент рисунка.

Мы живем в эпоху стремительно развивающихся цифровых технологий. Современную реальность уже трудно представить без персональных компьютеров, ноутбуков, планшетов, смартфонов и прочих электронных гаджетов, которые функционируют не изолированно друг от друга, а объединены в локальную сеть и подключены к глобальной сети

Важной характеристикой всех этих устройств является пропускная способность сетевого адаптера, определяющая скорость передачи данных в локальной или глобальной сети. Кроме этого, имеют значение скоростные характеристики канала передачи информации. В электронных устройствах нового поколения возможно не только чтение текстовой информации без сбоев и зависаний, но и комфортное воспроизведение мультимедийных файлов (картинки и фотографии в высоком разрешении, музыка, видео, онлайн-игры).

В чем измеряется скорость передачи данных?

Чтобы определить этот параметр, надо знать время, за которые были переданы данные, и количество переданной информации. Со временем все понятно, а что такое количество информации и как его можно измерить?

Во всех электронных устройствах, являющихся по сути компьютерами, хранимая, обрабатываемая и передаваемая информация кодируется в двоичной системе нулями (нет сигнала) и единицами (есть сигнал). Один нуль или одна единица – это один бит, 8 бит составляют один байт, 1024 байт (два в десятой степени) – один килобайт, 1024 килобайта – один мегабайт. Далее идут гигабайты, терабайты и более крупные единицы измерения. Данные единицы обычно используются для определения объема информации, хранящейся и обрабатываемой на каком-либо конкретном устройстве.

Количество же передаваемой от одного устройства к другому информации измеряют в килобитах, мегабитах, гигабитах. Один килобит – это тысяча бит (1000/8 байт), один мегабит – тысяча килобит (1000/8 мегабайт) и так далее. Скорость, с которой передаются данные, принято указывать в количестве информации, проходящей за одну секунду (число килобит в секунду, мегабит в секунду, гигабит в секунду).

Скорость передачи данных по телефонной линии

В настоящее время для подключения к глобальной сети по телефонной линии, которая изначально была единственным каналом подключения к Интернету, используется преимущественно модемная технология ADSL. Она способна превратить аналоговые телефонные линии в средства высокоскоростной передачи данных. Интернет-соединение достигает скорости 6 мегабит в секунду, а максимальная скорость передачи данных по телефонной линии по древним технологиям не превышала 30 килобит в секунду.

Скорость передачи данных в мобильных сетях

Стандарты 2g, 3g и 4g используются в мобильных сетях.

2g пришел на замену 1g в связи с необходимостью перехода аналогового сигнала на цифровой в начале 90-х годов. На мобильных телефонах, поддерживавших 2g, стало возможно пересылать графическую информацию. Максимальная скорость передачи данных 2g превысила показатель 14 килобит в секунду. В связи с появлением мобильного интернета была также создана сеть 2,5g.

В 2002 году в Японии была разработана сеть третьего поколения, но массовое производство мобильных телефонов с поддержкой 3g началось значительно позже. Максимальная скорость передачи данных по 3g выросла на порядки и достигла 2 мегабит в секунду.

Обладатели новейших смартфонов имеют возможность воспользоваться всеми преимуществами сети 4g. Ее усовершенствование продолжается до сих пор. Она позволит людям, проживающим в малых населенных пунктах, свободно получать доступ в Интернет и сделает его значительно выгоднее подключения со стационарных устройств. Максимальная скорость передачи данных 4g просто огромная – 1 гигабит в секунду.

К тому же поколению, что и 4g, принадлежат сети lte. Стандарт lte является первой, самой ранней версией 4g. Следовательно, максимальная скорость передачи данных в lte существенно ниже и составляет 150 мегабит в секунду.

Скорость передачи данных по оптоволоконному кабелю

Передача информации по оптоволоконному кабелю на сегодняшний день является самой быстрой в компьютерных сетях. В 2014 году в Дании учеными была достигнута максимальная скорость передачи данных по оптоволокну 43 терабита в секунду.

Через несколько месяцев ученые из США и Нидерландов продемонстрировали скорость 255 терабит в секунду. Величина колоссальная, но это далеко не предел. В 2020 году планируется достижение показателя 1000 терабит в секунду. Скорость передачи данных по оптоволокну практически не ограничена.

Скорость загрузки информации по Wi-Fi

Wi-Fi – торговая марка, обозначающая беспроводные компьютерные сети, объединенные стандартом IEEE 802.11, в которых информация передается по радиоканалам. Теоретически максимальная скорость передачи данных wifi составляет 300 мегабит в секунду, а в реальности у лучших моделей роутеров она не превышает 100 мегабит в секунду.

Преимуществами Wi-Fi являются возможность беспроводного подключения к Интернету с помощью одного роутера сразу нескольких устройств и низкий уровень радиоизлучения, который на порядок меньше, чем у сотовых телефонов в момент их использования.

29 апреля 2016 22:29

Каждый тип интернета имеет свои особенности и физическую природу, а соответственно и различные причины падения скорости. Сразу скажем, что для стрим-видео и игра типа GTA http://gta-gaming.ru/index/gta_kriminalnaja_rossija_skachat/0-26 нужен кабельный интернет.

Мобильный интернет

Как самый неустойчивый можно назвать мобильный интернет. Все мы знакомы с ним на практике и можем это подтвердить. Сигнал 3G действительно хороший, позволяет закачивать музыку, видео. Но довольно нестабильный в силу особенностей сигнала мобильного интернета – он есть не везде, карта покрытия касается больше крупных городов и пригородов, имеет чисто технические ограничения.

Кабельный интернет

Скорость кабельной связи вроде бы должна быть стабильной. Но на самом деле пользователи замечают колебания, а иногда и временную пропажу связи. Чем это объяснить? Во-первых, скорость будет зависеть от вашего оборудования. То есть насколько хорошо подобрано оборудование по своим техническим характеристикам и будет определять качество интернет-связи. Кроме этого еще необходимо, чтобы работы по проведению сетевых коммуникаций были выполнены качественно (скорость падает, если сетевой кабель имеет некачественные соединения). Сетевой адаптер в компьютере должен отвечать новейшим требованиям, если вы хотите успевать за развитием технологий. Также выбор роутера и свича сопряжен с некоторыми вопросами подбора по нужным техническим характеристикам.

Беспроводной интернет WIFI

На скорость беспроводного интернета влияет не только оборудование. Если у вас проведен сетевой кабель в квартиру и установлен роутер для раздачи wifi, то во многом скорость будет зависеть от выбора роутера, его настроек. Но разберем все детально и по порядку.

Что влияет на скорость беспроводного интернета

Обратите внимание, на каком стандарте wifi работает ваш роутер. Также важно, чтобы сетевой адаптер в вашем ноутбуке был если не новой модели, то по крайней мере не старой. Некоторые стандарты уже могут быть устаревшими, что снижает скорость. Например, если адаптер на вашем компьютере имеет стандарт 802.11g, то скорость может существенно снизится – до 15 – 20 Мбит/с (квартирный wifi).
Если ваш роутер поддерживает частоту 5 Ггц, то вы можете ускорить передачу данных. Обычно роутеры настраивают для работы на частоте 2.4 Ггц. Скорость беспроводной связи можно увеличить простым способом, если перейти на частоту 5 Ггц (принимающий адаптер также должен поддерживать эту частоту). Дело в том, что в бытовых условиях мало роутеров поблизости будет работать на этой же частоте, то есть шумы будут минимальны, а значит качество сигнала повысится.
Хорошо, если вы работаете в сети в той же комнате, где стоит роутер. Более мощное wifi оборудование потребуется, если роутер стоит за стеной или за двумя. Если стены толстые или помещение более 50 кв. метров, то мощность роутера необходима повыше. Иногда лучше взять несколько роутеров и оборудовать несколько wifi спотов.
Не устанавливайте роутер в закрытом шкафчике, а тем более в металлическом щитке или за железной дверью. Металл усложняет прохождение сигнала, а скорость падает до предельных значений.
Если работать в диапазоне 2.4 Ггц, могут наблюдаться помехи от соседних wifi сетей. Даже если вы решили не переходить на другой частотный диапазон, то в настройках роутера найдите наименее загруженный канал. Но при сильно загруженных каналах лучше приобрести роутер, который будет мощнее или же будет поддерживать два частотных диапазона – 2.4 и 5 Ггц.

Что зависит от провайдера?

Провайдер гарантирует определенную скорость и прописывает это в договоре с вами. Эту скорость он просчитывает в зависимости от своих возможностей, а именно, что влияет на скорость и зависит только от провайдера:
Загруженность предоставляемых пользователям каналов.
Качество кабеля, который проведен до квартир пользователей, а также качество и надежность всех кабельных соединений.
Качество всего провайдерского оборудования, которое находится на узлах, а также от оборудования, которое возможно провайдер вам выделяет для пользования. Сюда же относится сетевое оборудование, которое вы берете в аренду у провайдера.

Параметры, зависящие от абонента

  • Есть параметры, которые зависят только от абонента, то есть от вас. Перечислим:
  • Качество приобретаемого в магазине сетевого оборудования (сетевые адаптеры и роутер).
  • Качество кабельных соединений, надежность интернет-розеток, качество кабеля.
  • Технические параметры компьютера или ноутбука (любого устройства, в том числе и мобильного). Поддерживает ли сетевой адаптер на этом устройстве стандарт wifi 802.11n.
  • Программное обеспечение, которое способно влиять прямым или непрямым способом на скорость передачи данных (антивирус, torrent-клиент). Соответственно, на компьютере не должны находится вредоносные программы, вирусов, трояны - они способны тормозить передачу данных.

Неуправляемые параметры

  • Загруженность интернет-серверов, их мощность.
  • Качество тех каналов передачи, которые относятся ко всемирной сети интернет и находятся за пределами сети вашего провайдера (кабеля, которые связывают континенты и пр.).
  • Помехи от соседних wifi – сигналов, а также размещение роутера относительно природных и других ограничений (стены, двери), расстояние до роутера. Мощность передатчиков в вашем роутере должна соответствовать размеру помещения.
  • Обычно скорость, которую предлагает и гарантирует среднестатистический провайдер – 100Мбит/c. При желании вы можете найти возможность за дополнительную плату повысить скорость в 2 и больше раз. Однако, предлагаемая скорость более чем достаточна для стандартных задач, работы, развлечений.

Как проверить скорость передачи данных?

Чтобы самому протестировать скорость интернета, можно воспользоваться интернет-сервисами, они довольно популярны. Только измеряйте скорость непосредственно от кабеля, который идет от вашего провайдера, чтобы точно знать скорость, которую обеспечивает вам ваш оператор. Далее можете проверить скорость на вашем ноуте или компьютере – так вы будет знать где именно вы теряете в скорости. Имейте в виду, что разница в 5 Мбит/с, если сравнить тесты на различных сайта будут считатся в пределах нормы. Это обусловлено особенностями работы этих сервисов.

Детальнее о стандартах wifi

Иногда случается, что человек покупает роутер, на коробке которого написано, что он поддерживает скорость 150 Мбит/с или даже больше. Но в результате скорость передачи данных около 20 Мбит/с. Причина кроется в стандартах. Если подключение осуществляется по стандарту 802.11g (таково ваше хоть одно устройство), то пропускная способность будет максимум 54 Мбит/с.
Стандарт 802.11n дает пропускную скорость до 150 Мбит/с. «До» означает, что реально этой скорости не достичь, так как ее часть пойдет на нужды сети, так сказать. На практике цифры будут ближе к 90 Мбит/с или даже 50 Мбит/c. В первом случае с предыдущим стандартом также реальная скорость будет не 54 Мбит/с, а всего лишь около 23 Мбит/с.
Если ли роутеры с такими стандартами, чтобы скорость была повыше? Есть, и это дорогие модели роутеров. Они могут давать скорости более 100 Мбит/с.
Иногда пользователи думают, что при наведении мышей на значок компьютера в трее показываемая скорость 100 Мбит/с означает реальную скорость связи. На самом же деле это указатель максимально возможной скорости, на которую способно ваше оборудование. В данном случае сетевой адаптер компьютера или ноутбука. То есть эта цифра никак не связана со скоростью интернета от вашего провайдера, ваш компьютер не замеряет эту скорость. Ее измерить вы можете на специальных веб-сервисах.

Какой кабель лучше: медная витая пара или оптоволоконный кабель?

Пропускная способность этих двух кабелей на малых расстояниях примерно одинаковая. Обычно провайдер тянет к вашему дому оптоволоконный кабель, а разводку по квартирам делает уже из медной витой пары. Для расстояний до 100 метров витая пара зарекомендовала себя хорошо: можно получить скорости 200 – 1000 Мбит/с. Это при условии, если использовать все 8 жил кабеля, а также подключить его к гигабитному порту. 4-жильный медный провод дает возможность получить скорость 100 Мбит/с. Этой скорости вполне достаточно для работы и развлечений.
Итак, для расстояний до 100 метров используют медную витую пару из 4 жил, для расстояний свыше 100 метров используют оптоволоконный кабель.

Почему нельзя разводку по квартирам делать из оптоволокна

  • Он легко повреждается, и требует замены.
  • Если у одного пользователя неисправное оборудование по приему сигнала, то это дает фоновый шум на весь дом. Из-за этого абоненты на этой линии не могут работать.
  • С оптоволокном сложнее осуществить защиту персональных данных.

Думаете, скорость вашего широкополосного подключения к интернету быстрая? Осторожно, после прочтения данной статьи ваше отношение к слову "быстро" относительно передачи данных может сильно измениться. Представьте объем вашего жесткого диска на компьютере и определитесь, какая скорость его заполнения является быстрой -1 Гбит/с или может быть 100 Гбит/с, тогда 1 терабайтный диск заполнится уже через 10 сек? Если бы книга рекордов Гиннеса констатировала рекорды по скорости передачи информации, то ей бы пришлось обработать все приведенные далее эксперименты.

В конце ХХ в., то есть еще относительно недавно, скорости в магистральных каналах связи не превышали десятков Гбит/с. В то же время пользователи интернета с помощью телефонных линий и модемов наслаждались скоростью в десятки килобит в секунду. Интернет был по карточкам и цены за услугу были немаленькие - тарифы приводились, как правило, в у.е. На загрузку одной картинки порой даже уходило несколько часов и как точно подметил один из пользователей интернета того времени: "Это был интернет, когда за одну ночь можно было только несколько женщин в интернете посмотреть". Такая скорость передачи данных медленная? Возможно. Однако стоит помнить, что все в мире относительно. Например, если бы сейчас был 1839 г., то неким подобием интернета для нас бы представляла самая протяженная в мире оптическая телеграфная линии связи Петербург-Варшава. Длина этой линии связи для ХIХ века кажется просто заоблачной - 1200 км, состоит она из 150 ретранслирующих транзитных вышек. Любой гражданин может воспользоваться этой линией и послать "оптическую" телеграмму. Скорость "колоссальная" - 45 символов на расстояние 1200 км можно передать всего за 22 минуты, никакая конная почтовая связь здесь и рядом не стояла!

Вернемся в ХХI век и посмотрим, что в сравнении с описанными выше временами мы сегодня имеем. Минимальные тарифы у крупных провайдеров проводного интернета исчисляются уже не единицами, а несколькими десятками Мбит/с; смотреть видео с разрешением менее 480pi мы не уже хотим, такое качество картинки нас уже не устраивает.

Посмотрим среднюю скорость интернета в разных странах мира. Представленные результаты составлены CDN-провайдером Akamai Technologies. Как видно, даже в республике Парагвай уже в 2015 году средняя скорость соединения по стране превышала 1.5 Мбит/с (кстати, Парагвай имеет близкий для нас русских по транслитерации домен - *.py).

На сегодняшний день средняя скорость интернет соединений в мире составляет 6.3 Мбит/с . Наибольшая средняя скорость наблюдается в Южной Корее 28.6 Мбит/с, на втором месте Норвегия -23.5 Мбит/с, на третьем Швеция - 22.5 Мбит/с. Ниже приведена диаграмма, показывающая среднюю скорость интернета по лидирующим в этом показателе странам на начало 2017 года.

Хронология мировых рекордов скоростей передачи данных

Поскольку сегодня неоспоримым рекордсменом по дальности и скорости передачи являются волоконно-оптические системы передачи, акцент будет делаться именно на них.

С каких скоростей все начиналось? После многочисленных исследований в период с 1975 по 1980 гг. появилась первая коммерческая волоконно-оптическая система, работающая с излучением на длине волны 0,8 мкм на полупроводниковом лазере на основе арсенида галлия.

22 апреля 1977 года в Лонг-Бич, штат Калифорния, компания General Telephone and Electronics впервые использовала оптический канал для передачи телефонного трафика на скорости 6 Мбит/с . При такой скорости, можно организовать одновременную передачу до 94 простейших цифровых телефонных каналов.

Максимальная скорость оптических систем передачи в экспериментальных исследовательских установках этого времени доходило до 45 Мбит/с , максимальное расстояние между регенераторами - 10 км .

В начале 1980-х передача светового сигнала проходила в многомодовых волокнах уже на длине волны 1,3 мкм с помощью InGaAsP-лазеров. Максимальная скорость передачи была ограничена значением 100 Мбит/с вследствие дисперсии.

При использовании одномодовых ОВ в 1981 году при лабораторных испытаниях добились рекордной для того времени скорости передачи 2 Гбит/с на расстоянии 44 км .

Коммерческое внедрение таких систем в 1987 году обеспечивало скорость до 1,7 Гбит/с с протяженностью трассы 50 км .

Как можно было заметить, оценивать рекорд системы связи стоит не только по скорости передачи, здесь также крайне важно на какое расстояние данная система способна обеспечить данную скорость. Поэтому для характеристики систем связи обычно пользуются произведением общей пропускной способности системы B [бит/с] на ее дальность L [км].


В 2001 году при применении технологии спектрального уплотнения была достигнута скорость передачи 10,92 Тбит/с (273 оптических канала по 40 Гбит/с), но дальность передачи была ограничена значением 117 км (B∙L = 1278 Тбит/с∙км).

В этом же году был проведен эксперимент по организации 300 каналов со скоростью 11,6 Гбит/с каждый (общая пропускная способность 3.48 Тбит/с ), длина линии составила свыше 7380 км (B∙L = 25 680 Тбит/с∙км).

В 2002 г. была построена межконтинентальная оптическая линия протяженностью 250 000 км с общей пропускной способностью 2.56 Тбит/с (64 WDM канала по 10 Гбит/с, трансатлантический кабель содержал 4 пары волокон).

Теперь с помощью единственного оптоволокна можно одновременно передавать 3 миллиона! телефонных сигналов или 90 000 сигналов телевидения.

В 2006 г. Nippon Telegraph и Telephone Corporation организовали скорость передачи 14 триллион бит в секунду (14 Тбит/с ) по одному оптическому волокну при длине линии 160 км (B∙L = 2240 Тбит/с∙км).

В этом эксперименте они публично продемонстрировали передачу за одну секунду 140 цифровых HD фильмов. Величина 14 Тбит/с появилась в результате объединения 140 каналов по 111 Гбит/с каждый. Использовалось мультиплексирование с разделением по длине волны, а также поляризационное уплотнение.

В 2009 г. Bell Labs достигли параметра B∙L = 100 пета бит в секунду умножить на километр, преодолев, таким образом, барьер в 100 000 Тбит/с∙км.

Для достижения таких рекордных результатов исследователи из лаборатории Bell Labs в Villarceaux, Франция, использовали 155 лазеров, каждый из которых работает на своей частоте и осуществляет передачу данных на скорости 100 Гигабит в секунду. Передача осуществлялась через сеть регенераторов, среднее расстояние между которыми составляло 90 км. Мультиплексирование 155 оптических канала по 100 Гбит/с позволило обеспечить общую пропускную способность 15,5 Тбит/с на расстоянии 7000 км . Чтобы осмыслить значение этой скорости, представьте, что идет передача данных из Екатеринбурга во Владивосток со скоростью 400 DVD-дисков в секунду.

В 2010 г. NTT Network Innovation Laboratories добились рекорда скорости передачи 69.1 терабит в секунду по одному 240-километровому оптическому волокну. Используя технологию волнового мультиплексирования (WDM), они мультиплексировали 432 потока (частотный интервал составил 25 ГГц) с канальной скоростью 171 Гбит/с каждый.

В эксперименте применялись когерентные приемники, усилители с низким уровнем собственных шумов и с ультра-широкополосным усилением в С и в расширенном L диапазонах. В сочетании с модуляцией QAM-16 и поляризационного мультиплексирования, получилось достичь значения спектральной эффективности 6.4 бит/с/Гц.

На графике ниже видна тенденция развития волоконно-оптических систем связи на протяжении 35 лет с начала их появления.

Из данного графика возникает вопрос: "а что дальше?" Каким образом можно еще в разы повысить скорость и дальность передачи?

В 2011 г. мировой рекорд пропускной способности установила компания NEC, передав более 100 терабит информации в секунду по одному оптическому волокну. Этого объема данных, переданного за 1 секунду, достаточно, чтобы просматривать HD фильмы непрерывно в течение трех месяцев. Или это эквивалентно передаче за секунду содержимого 250 двухсторонних Blu-ray дисков.

101,7 терабит были переданы за секунду на расстояние 165 километров с помощью мультиплексирования 370 оптических каналов, каждый из которых имел скорость 273 Гбит/с.

В этом же году National Institute of Information and Communications Technology (Токио, Япония) сообщил о достижении 100-терабного порога скорости передачи посредством применения многосердцевинных ОВ. Вместо того чтобы использовать волокно только с одной световедущей жилой, как это происходит современных коммерческих сетях, команда использовали волокно с семью сердцевинами. По каждой из них осуществлялась передача со скоростью 15.6 Тбит/с, таким образом, общая пропускная способность достигла 109 терабит в секунду.

Как заявили тогда исследователи, использование многосердцевинных волокон пока является достаточно сложным процессом. Они имеют большое затухание и критичны к взаимным помехам, поэтому сильно ограничены по дальности передачи. Первое применение таких 100 терабитных систем будет внутри гигантских центров обработки данных компаний Google, Facebook и Amazon.

В 2011 г. команда ученых из Германии из технологического института Karlsruhe Institute of Technology (KIT) без использования технологии xWDM передала данные по одному ОВ со скоростью 26 терабит в секунду на расстояние 50 км . Это эквивалентно передачи в одном канале одновременно 700 DVD-дисков в секунду или 400 миллионов телефонных сигналов.

Начали появляться новые услуги, такие как облачные вычисления, трехмерное телевидение высокой четкости и приложения виртуальной реальности, что опять требовало беспрецедентной высокой емкости оптического канала. Для решения этой проблемы исследователи из Германии продемонстрировали применение схемы оптического быстрого преобразования Фурье для кодирования и передачи потоков данных со скоростью 26.0 Тбит/с. Для организации такой высокой скорости передачи была использована не просто классическая технология xWDM, а оптическое мультиплексирование с ортогональным частотным разделением каналов (OFDM) и соответственно декодирование оптических OFDM потоков.

В 2012 г. японская корпорация NTT (Nippon Telegraph and Telephone Corporation) и три ее партнера: фирма Fujikura Ltd., университет Hokkaido University и университет Technical University of Denmark установили мировой рекорд пропускной способности, передав 1000 терабит (1 Пбит / с ) информации в секунду по одному оптическому волокну на расстояние 52.4 км . Передача одного петабита в секунду эквивалентна передаче 5000 двухчасовых HD фильмов за одну секунду.

С целью значительного улучшения пропускной способности оптических коммуникационных систем, было разработано и протестировано волокно с 12-тью сердцевинами, расположенных особым образом в виде соты. В данном волокне благодаря его особой конструкции взаимные помехи между соседними сердцевинами, которые обычно являются главной проблемой в обычных многосердцевинных ОВ, значительно подавлены. В результате применения поляризационного мультиплексирования, технологии xWDM, квадратурной амплитудной модуляции 32-QAM и цифрового когерентного приема, ученые успешно повысили эффективность передачи в расчете на одну сердцевину более чем в 4 раза, в сравнении с предыдущими рекордами для многосердцевинных ОВ.

Пропускная способность составила 84.5 терабит в секунду на одну сердцевину (скорость канала 380 Гбит/с х 222 каналов). Общая пропускная способность на одно волокно составила 1.01 петабит в секунду (12 х 84.5 терабит).

Также в 2012 г. немного позднее исследователи из лаборатории NEC в Принстоне, Нью-Джерси, США, и Нью-Йоркского научно-исследовательского центра Corning Inc., успешно продемонстрировали сверхвысокую скорость передачи данных со скоростью 1.05 петабит в секунду. Данные передавались с помощью одного многосердцевинного волокна, которое состояло из 12 одномодовых и 2 маломодовых сердцевин.

Данное волокно было разработано исследователями Corning. Объединив технологии спектрального и поляризационного разделения с пространственным мультиплексированием и оптической системы MIMO, а также используя многоуровневые форматы модуляции, исследователи в результате достигли общей пропускной способности 1.05 Пбит/с, поставив, таким образом, новый мировой рекорд самой высокой скорости передачи по одному оптическому волокну.

Летом 2014 года рабочая группа в Дании, используя новое волокно, предложенное японской компанией Telekom NTT, установила новый рекорд -организовав с помощью одного лазерного источникаскорость в 43 Тбит/с . Сигнал от одного лазерного источника передавался по волокну с семью сердцевинами.

Команда Датского технического университета совместно с NTT и Fujikura ранее уже достигала самой высокой в мире скорости передачи данных в 1 петабит в секунду. Однако тогда были использованы сотни лазеров. Сейчас же рекорд в 43 Тбит/с был достигнут с помощью одного лазерного передатчика, что делает систему передачи более энергоэффективной.

Как мы убедились, в связи есть свои интересные мировые рекорды. Для новичков в этой области стоит отметить, что многие представленные цифры до сих пор не встречаются повсеместно в коммерческой эксплуатации, поскольку были достигнуты в научных лабораториях в единичных экспериментальных установках. Однако и сотовый телефон когда-то был прототипом.

Чтобы не перегружать ваш носитель информации, пока остановим текущий поток данных.

Продолжение следует…

Похожие статьи