Самые популярные программы сапр. Обзор современных систем автоматизированного проектирования

16.05.2019
Pro/ENGINEER

CAD/CAM/CAE система. Более 310,000 профессиональных пользователей работают с Pro/ENGINEER - он обладает чрезвычайной мощью,сочетая в себе непревосходимую скорость и точность. Более 42 000 предприятий по всему миру применяют PLM-продукты PTC на всех стадиях жизненного цикла изделий.
Новая версия Pro/ENGINEER предлагает прогрессивные, значительно повышающие продуктивность работы конструктора технологии моделирования и редактирования геометрии, а также аппарат создания фотореалистичных изображений высочайшего качества. Среди них – создание трёхмерных макетов в виде "облака точек", динамическая деформация трёхмерной модели и многие другие.
Разработчик - Parametric Technology Corp. , США.

CATIA

CATIA - ключевой бренд Dassault Systèmes и мировой лидер среди программных продуктов, поддерживающих проектирование и поиск инноваций. Во всем мире тысячи компаний различных отраслей используют функции виртуального проектирования, обеспечи ваемые продуктами CATIA, для создания по-настоящему успешной продукции. Решения CATIA адресуются всем компаниям, от производителей комплексного оборудования до их поставщиков и предприятий малого и среднего бизнеса.

CAD/CAM/CAE система CATIA (Computer Aided Three-dimensional Interactive Application) - это полностью интегрированная универсальная CAD/CAM/CAE система высокого уровня, позволяющая обеспечить параллельное проведение конструкторско-производственного цикла CATIA, являясь универсальной системой автоматизированного проектирования, испытания и изготовления, широко применяется на крупных машиностроительных предприятиях во всем мире для автоматизированного проектирования, подготовки производства, реинжиниринга. Функции, поддерживаемые CATIA/CADAMSolutions: · администрирование - планирование, управление ресурсами, инспектирование и документирование проекта;· самый совершенный моделлинг;· описание всех механических связей между компонентами объекта и приведение их в состояние пространственного взаимопозиционирования;· автоматический анализ геометрических и логических конфликтов· анализ свойств сложных сборок;· разработанный инструментарий трассировок систем коммуникаций с соблюдением заданных ограничений;· специализированные приложения для технологической подготовки производства.
Разработчик - Dassault Systèmes , (Франция).

SolidWorks

Мощный машиностроительный CAD пакет для твёpдотельного пapaметpического моделиpовaния сложных деталейисборок. Системa констpуиpовaния сpеднего клaссa, бaзиpующaясянa пapaметpическом геометpическом ядpе Parasolid.Создaнa специaльно для использовaния нa пеpсонaльных компьютеpaх под упpaвлением опеpaционных систем Windows.
Разработчик - Dassault Systèmes .

NX

CAD/CAM/CAE система NX от Siemens PLM Software предлагает инструменты и технологии нового поколения, которые способствуют преобразованию процесса развития изделия. Качественно новые инструменты позволяют разрабатывать изделия в единой управляемой среде путем интеграции всех процессов. Инструменты NX предоставляют больше возможностей моделирования, обладают гибкостью и производительностью. Благодаря объединению параметрического моделирования и моделирования без дерева построения, а такжетехнологии активного макета, облегчающей работу со сборкой, NX станавливает новые стандарты скорости, производительности и легкости применения.

Серия продуктов Unigraphics Solutions, Inc.: Unigraphics Solutions, Parasolid, Solid Edge, Unigraphics, IMAN, ProductVision, GRIP.
CSoft .

SolidEdge

Solid Edge - лидер на рынке систем автоматизированного проектирования для машиностроения , оснащенная уникальными инструментами создания и редактирования 3D цифровых макетов. Превосходные базовые функции моделирования и встроенные рабочие процессы, учет специфических потребностей конкретных отраслей, полная интеграция со средствами управления проектированием – все это позволяет разрабатывать в Solid Edge точные и безошибочные проектные решения. Инструменты моделирования деталей и сборок в Solid Edge дают возможность инженерам легко создавать самые разнообразные изделия - от отдельных деталей до сборок, состоящих из тысяч компонентов. Ориентированные на нужды конкретных отраслей команды и структурированные рабочие процессы ускоряют проектирование типовых элементов, а создание, анализ и редактирование сборок гарантирует точное сопряжение и правильное функционирование каждой детали. При проектировании в Solid Edge ваши изделия корректно собираются с первого раза.
Разработчик - . Дополнительно - CSoft .

think3

Система автоматизированного проектирования для машиностроения среднего уровня.Обеспечивает двумерное проектирование, трёхмерное поверхностное и твердотельное моделирование, проектирование изделий из листовых материалов, ассоциативность двумерного чертежа с трёхмерной моделью, фотореалистичное представление проекта.
Разработчик - think3, Inc , США.

Серия продуктов для проектирования и управления данными проекта: CAD 3D и 2D CAD, комплексное управление данными об изделии (PDM), а также взаимодействие программного обеспечения. Широкий набор дополнительных модулей по дизайну, CoCreate обеспечивает скорость, гибкость реагирования на изменения для клиентов,короткие циклыразработки, легкий процесс проектирования. Основные модули - CoCreate Modeling и CoCreate Drafting.
Разработчик - Parametric Technology Corp .

KeyCreator

KeyCreator™ это полнофункциональное программное обеспечение, обеспечивающее профес сиональных конструкторов современными инструментами для выполнения сложных проектных работ. KeyCreator позволяет полностью редактировать, как "родную", так и импортированную геометрии, поддерживает создание сложных поверхностных моделей. Простой в использовании и создании 2D чертежей и 3D моделей.
Разработчик - Kubotek Corporation , USA.

T-FLEX

Программный комплекс T-FLEX CAD/CAM/CAE/CAPP/PDM объединяет программы для трехмерного проектирования, модули подготовки управляющих программ для станков с ЧПУ и инженерных расчетов. Все системы комплекса T-FLEX CAD/CAM/CAE/CAPP/PDM функционируют на единой информационной платформе системы PDM T-FLEX DOCs. Российский программный комплекс T-FLEX CAD/CAM/CAE/CAPP/PDM - набор современных программных средств для решения задач автоматизации трехмерного проектирования, конструкторско-технологической подготовки производства любой сложности в различных отраслях промышленности.
САПР T-FLEX CAD - профессиональная конструкторская программа. САПР T-FLEX CAD объединяет мощные параметрические возможности 2D и 3D-моделирования со средствами создания и оформления чертежей и конструкторской документации. Технические новшества и хорошая производительность САПР T-FLEX CAD в сочетании с удобным и понятным интерфейсом делают САПР T-FLEX CAD универсальным и эффективным средством 2D и 3D-проектирования изделий. Благодаря широкому набору конструкторских инструментов САПР T-FLEX CAD является лучшим выбором для решения любых проектных задач. Конструкторы по всему миру используют САПР T-FLEX CAD в самых различных отраслях промышленности: общем машиностроении и приборостроении, в аэрокосмической, автомобильной и судостроительной отраслях, а также в проектно-строительных организациях. САПР T-FLEX CAD применяют как при проектировании изделий основного производства, так и при создании всего комплекса необходимой оснастки - штампов и пресс-форм, инструмента и приспособлений.
Разработчик – Топ-Системы , Москва.

«bCAD Про» - программная система полного цикла проектирования: дизайна, конструирования и подготовки производства для всего, что можно изготовить из листовых и профильных материалов. Она позволяет проектировать как различные изделия из этих материалов: мебель, торговое оборудование, выставочные стенды, павильоны, малые архитектурные формы, так и помещения, в которых эти изделия находятся, для которых их изготавливают: офисы, клубы, бары, квартиры и т.п., а также различные элементы таких помещений: подиумы, стойки ресепшн, барные стойки и многое другое - успешно проектируют в «bCAD Про». Возможна работа одновременно с несколькими проектами, объединение моделей в единый проект, расстановка созданных моделей по помещению офиса или квартиры. «bCAD Про» включает в себя возможности всех остальных продуктов линейки: «bCAD Мебель», «bCAD Витрина» и «bCAD Дизайнер». Все, что написано о возможностях этих продуктов, в нем есть. В нем можно выполнять все те же работы и создавать библиотеки материалов, крепежа и комплектующих. Главными отличиями является возможность создавать изделия с профильными деталями и экспорт сведений о проетах в форматах баз данных.
Разработчик - ProPro Group , Новосибирск.

КОМПАС

Один из лидирующих российских продуктов. CAD-система, предназначенная для широкого спектра проектно-конструкторских работ, лёгкая в освоении, удобная в работе и при этом имеющая стоимость, приемлемую для комплексного оснащения российских предприятий, в том числе средних и малых. Позволяет осуществлять двумерное проектирование и конструирование, быструю подготовку и выпуск разнообразной чертёжно-конструкторской документации, создание технических текстово-графических документов. Разработчик – , Россия.

DesignCAD Series

DesignCAD - программа, которая сочетает в себе легкое в понимании и использовании 2D черчение с мощным и точным 3D моделированием для достижения потрясающих результатов в зависимости от вашего воображения и креативности. Дизайн никогда не был таким легким, как с использованием легкого в понимании интерфейса программы и обширной справочной библиотеки. Программа позволяет вам быстро создавать нужные чертежи. Также в программе имеется возможность твердотельного моделирования и создания анимации и презентаций. DesignCAD 3D Max является универсальным инструментом САПР для начинающих и продвинутых пользователей.
Разработчик - IMSI/Design, LLC. , США.

TurboCAD Pro

TurboCAD Pro - мощное универсальное средство для профессионального CAD проектирования. Объединенное 2D и 3D проектирование способно удовлетворить самых взыскательных пользователей. Полная мощь промышленного стандарта ACIS® v8 solid modeling engine сосуществует с мощным поверхностным моделированием, для предостовления Вам максимальных возможностей. TurboCAD Prol поддерживает двадцать пять из самых популярных форматов файлов, включая AutoCAD® DWG/DXF, MicroStation® DGN, 3DS, IGEN, STL и прочее. Вы также имеете возможность экспортировать Ваши проекты в HTML, JPG, MTX. TurboCAD Professional включает реалистический рендеринг, полноценное 3D моделирование с оболочками и лофтингом.... работу с файлами AutoCAD, возможность работы с сетью Интернет, обучающие программы. TurboCAD полностью настраивается, имеет встроенный Microsoft’s VBA и совместим с Microsoft Office. Эта программа также включает Software Development Kit и Visual Basic® Macro Recorder. TurboCAD Professional - это самое новое и самое мощное приложение для автоматизированного проектирования трехмерной графики.
Разработчик - IMSI/Design, LLC. , США

IronCAD

Система автоматизированного проектирования для машиностроения. Обеспечивает двумерное проектирование и трёхмерное твердотельное моделирование.
Разработчик - Visionary Design Systems, Inc. , США.

Cimatron

Cimatron – интегрированная CAD/CAM – система, предоставляющая полный набор средств дляконструирования изделий, разработки чертёжно-конструкторской документации, инженерного анализа, создания управляющих программ для станков с ЧПУ. Cimatronудовлетворяет запросам и требованиямсамого широкого круга пользователей, работает на различных платформах, в том числе на персональных компьютерах. Пользователями системы в мире являются около 6000 компаний.
Разработчик – , Израиль. Дополнительно - на Bee Pitron .

TEBIS

Развитая CAD/CAM – система. Двумерное проектирование и черчение, трёхмерное моделирование.
Разработчик – Tebis Technische Informationssysteme AG , Германия.

VISI Series

Серия продуктов Vero, развитая система: CAD/CAM/CAE Software - Molds, Tools, Wire EDM, Laser Cut. Обеспечивает двумерное проектирование и черчение, трёхмерное поверхностное и твердотельное моделирование, генерацию программ для станков с ЧПУ, визуализацию обработки детали.
Разработчик – Vero Software , США. Смотреть on-line видео .

VX CAD/CAM

Развитая CAD/CAM система. Основные модули: VX Innovator, VX Designer, VX Mold&Die, VX 3D Machinist, VX End-to-End.
Разработчик – VX Corporation , США.

Основной продукт - CADMAX SolidMaster – система автоматизированного проектирова ния, обеспечивающая двумерное проектирование, трёхмерное поверхностное и твердотельное моделирование.
Разработчик – , США.

Расчёты и анализ

ANSYS

Конечноэлементный пакет. Фирма ANSYS,Inc. в течение 35 лет является одним из лидер ов САЕ-рынка, разрабатывает и предлагает широкую линейку программных продуктов для автоматизированного инженерного анализа. Основанная г-ном Джоном Свонсоном, первоначально фирма называлась Swanson Analysis Systems, и предалагала только универсальный конечно-элементный комплекс ANSYS. Позднее программа дала имя и самой фирме. На сегодняшний день фирма является лидером рынка расчётных систем как по объёму продаж, так и по количеству используемых по всему миру рабочих мест её програмного обеспечения, и широте линейки и применимости программных продуктов: ANSYS, AutoDYN, CFX, Fluent, ICEM, Maxwell ... это лишь краткий список.

Линейка продуктов ANSYS широка и обеспечивает все нужды расчётчика на всех этапах его работы, начиная с построения или модификации геометрической и сеточной модели, далее переходя к эффективному решению задачи, и заканчивая обработкой, представлением и документированием результатов.

Основными в линейке программных продуктов являются следующие, являющиеся инструментами для решения задач:

ANSYS - прочности, теплофизики, электромагнетизма
AutoDYN - моделирования высоконелинейных и быстротекущих процессов
CFX - гидрогазодинамики
Fluent - гидрогазодинамики
Maxwell - электромагнетизма
DesignModeler - создание и\или модификация геометрических моделей
ICEM - универсальный инструмент для построения и модификации сеточных моделей
Gambit - универсальный инструмент для построения и модификации сеточных моделей для задач гидрогазоднамики

MSC.Software

Подготовка производства

IMS Software
ADEM

Система ADEM предназначена для автоматизации конструкторских и технологических бюро, цехов основного и технологического производства. Имея модульную структуру, ADEM может быть скомплектована как для решения частных задач проектирования, так и для сквозной подготовки производства. В состав системы входят модули:

ADEM CAD
ADEM CAPP/CAM
ADEM GPP
ADEM Vault
Данные модули объединяют в едином конструкторском и технологическом пространстве все известные методы проектирования и моделирования, подготовку управляющих программ для всех типов стоек станков с ЧПУ. Они обеспечивают целостность графической, технологической и расчетной информации, управление базами данных предприятия, генерация любых отчетных документов.
Разработчик - Omega ADEM Technologies Ltd. Дополнительная информация - Ловыгин Василий , Томск. ADEM в Томске .

CAD/CAM система, занимающая лидирующее положение в мире по количеству продаж и инста лляций пакета среди CAD/CAM систем. Обеспечивает каркасное и поверхностное моделирование деталей, визуализацию и документирование простых и сложных деталей и сборочных единиц, разработку управляющих программ для токарной, фрезерной, электроэрозионной обработки на станках с ЧПУ.
Разработчик - CNC Software, Inc. , США.

Vero Software

Серия продуктов для производства: CAD/CAM - автоматизированное проектирование/автоматизированное управление технологическими процессами.
Разработчик – Vero Software Plc , Великобритания. Дополнительно - Компания ПФ "МОЛД СЕРВИС" .

СПРУТ

Интегрированный комплекс программных продуктов позволит: автоматизировать все процессы подготовки и планирования производства в сжатые сроки и с высокой эффективностью; организовать работу на предприятии в соответствии с мировыми стандартами; повысить скорость, качество и производительность труда.
Разработчик - ЗАО "СПРУТ-Технология" , г.Набережные Челны, Россия.

Delcam PLC

Семейство программ компании Delcam охватывает все этапы производственного цикла. Оно соч етает в себе функциональность с новейшими технологиями в области пользовательского интерфейса. В результате резкое сокращение этапа проектирования и подготовки производства. Каждый продукт Delcam сфокусирован на специфическом аспекте конструирования, производства и контроля сложных изделий и является самым оптимальным решением в своей области применения:

Delcam PowerSHAPE, Delcam PowerMILL, Delcam PowerINSPECT, Delcam CopyCAD, Delcam ArtCAM, Delcam Exchange, Delcam Toolmaker, Delcam Electrode, Delcam PS-Team, Delcam FeatureCAM, Delcam

PartMaker, Delcam Crispin, Delcam DentCAD, Delcam DentMILL.
Разработчик - Delcam PLC .

SolidCAM

Пакет генерации управляющих программ для станков с ЧПУт при обработке деталей, с одержащих сложнуюповерхностную или твердотельную геометрию. Обеспечивает 2,5 и 3-осевую фрезерную обработку, токарную обработку, визуализацию процесса обработки.
Разработчик – , Израиль.

Концептуальный дизайн и визуализация

Autodesk® AliasStudio™

Autodesk® AliasStudio™ является частью технологии цифровых прототипов Autodesk, и известно теперь как семейство продуктов Autodesk Alias,в которое входят Autodesk® Alias® Design, Autodesk® Alias® Surface и Autodesk® Alias® Automotive.

Полнофункциональный набор инструментов для творческого процесса проектирования, помогающих компаниям создавать превосходные дизайнерские решения, обеспечивающие успех в бизнесе. Программа для дизайнеров потребительской продукции, которая позволяет управлять всем процессом работы над дизайном: от поиска идей до передачи готовых поверхностей конструкторам. Быстрее разрабатывайте и передавайте концепции, используя эскизы, 3D модели, иллюстрации, фотореалистичные изображения и анимационные ролики.
Autodesk, Inc.

Помогает быстрее разрабатывать инновационный дизайн для товаров народного потребления. Autodesk Alias является частью технологии цифровых прототипов Autodesk. Программа применяется для разработки дизайна потребительской продукции. Она охватывает весь процесс работы над дизайном - от набросков идей до передачи готовых поверхностей конструкторам.
Autodesk, Inc.

Autodesk® Alias® Surface

Autodesk® Alias® Surface предоставляет полный набор средств динамического 3D моделирования, которые позволяют преобразовывать концептуальные модели и сканированные данные в поверхности высокого качества для дизайна потребительских товаров, а также в поверхности класса А для автомобильного дизайна.
Autodesk, Inc.

Autodesk® Alias® Automotive

Autodesk® Alias® Automotive - лидирующий в отрасли продукт для автомобильного дизайна, выбор лучших автодизайнерских студиий по всему миру. В продукте представлен полный набор инструментов для визуализации и анализа охватывающий весь процесс моделирования изделий сложной формы, от создания эскизов до получения готовых поверхностей класса А.
Autodesk, Inc.

Form-Z

Система двумерного проектирования и черчения, трёхмерного поверхностного итвёрдотельного моделирования, визуализации и анимации для профессионального дизайна, визуализации и проектирования.
Разработчик – Autodessys, Inc. , США.

Прикладные САПР

Bentley Systems, Incorporated - серия продуктов

Bentley - мировой лидер в области комплексных программных решений для поддержки и нфраструктуры в течение ее жизненного цикла, т.е. при проектировании, создании и эксплуатации зданий, мостов, транспортных сетей, предприятий водо- тепло- энерго- снабжения, очистки воды и т.п.

Продукты и технология платформы MicroStation:

Анализ и проектирование зданий
Проектирование и конструирование мостов
Землеустройство
Картография
Гражданское строительство
Проектирование и конструирование заводов
Концептуальное проектирование промышленных объектов
Проектирование и анализ сетей электро- и газоснабжения
Строительное проектирование и анализ
Проектирование и анализ сетей водоснабжения и канализации, и др.

Разработчик - .

Система E3.series имеет модульный принцип построения. Она состоит из трёх основных модулей:

E3-schematic – модуль для проектирования различных типов схем (технологические, функц иональные, пневматические, электрические, однолинейные и т.д.)
E3-cable – модуль для проектирования кабельно-жгутовых схем, а также схемы внешних проводок. Включает в себя функционал модуля E3-schematic
E3-panel – модуль компоновки и трассировки. Выполняет расстановку оборудования по шкафу (щиту, панели и т.д.); трассировку проводов в соответствии с принципиальной схемой; раскладку кабелей по кабельным каналам на плане объекта.

Помимо основных модулей существуют дополнительные:
Интерфейсы по экспорту данных по жгутам и кабелям в системы трёхмерного проектирования и трёхмерной раскладки кабелей по объектам – Autodesk Inventor Professional, SolidWorks, Unigraphics, Catia.
E3-PDF Output – модуль экспорта проекта в векторный формат PDF. В таком PDF файле сохраняется структура проекта; возможен поиск изделия по любому атрибуту; переход по перекрёстным ссылкам изделий и цепей и другие возможности.
Разработчик - Zuken .

CADSTAR

Развитая система автоматизировации проектирования и изготовления электронных схем и печатных плат (PCB CAD). Разработчик – Zuken .

DEFCAR CAD/CAM

Система для проектирования и подготовки производства в кораблестроении.
Разработчик – Defcar, S.L. , Испания.

VUTRAX

Vutrax PCB CAD–система автоматизированного проектирования электронных схем и печатных плат (PCB CAD).

Planit

Серия продуктов Planit CAD/CAM - автоматизированное проектирования для дерево, камне- и металлообрабатывающей индустрии: Wood CAD/CAM Software, Stone CAD/CAM Software, Wood CAD/CAM Software.
Разработчик – Planit , США.

ГОСТы Союза Советских Социалистических Республик предусматривали деление САПР на девять групп:

8) резерв;

9) резерв.

Фактически такая классификация означала разделение систем «по назначению». Однако, универсальные САПР успешно применяют в различных предметных областях, кроме того, приведенный список не содержит, например, «геодезические» системы, которые, по некоторым данным, сегодня составляют около 13% рынка всех продаваемых в мире САПР.

САПР также разделяют по сложности объекта проектирования:

До 100 составных частей - простых объектов;

От 100 до 1000 - объектов средней сложности;

От 1000 до 10000 - сложных;

От 10000 до 1000000- очень сложных;

Свыше 1000000 - объектов очень высокой сложности.

Для любителей русского языка можно предложить небольшое логическое упражнение: попробуйте “почувствовать разницу” между САПР очень сложных объектов и САПР объектов очень высокой сложности.

Если объектом проектирования является некоторое изделие, то составной частью объекта является деталь. Если проектируется некий технологический процесс, то что является составной частью САПР до сих пор никто так и не определил...

Системы САПР также различаются по уровню автоматизации:

Низкоавтоматизированные САПР (до 25% проектных процедур);

Среднеавтоматизированные(от 25% до 50% проектных процедур);

Высокоавтоматизированные(свыше 50%)

Лет 6-8 назад все машиностроительные предприятия должны были периодически посылать в свои министерства в Москву отчеты об уровне автоматизации.

Есть еще несколько признаков классификации САПР, которые определяются ГОСТом, типа “кол-во выпускаемых документов”, но мы их рассматривать не будем.

“Буржуазные” CAD/CAM/CAE системы классифицируются гораздо проще: полномасштабные полнофункциональные CAD/CAM/CAE системы на рабочих станциях называются “тяжелыми” САПР-ами, а все остальные - “легкими”.

Все выше перечисленные CAD/CAM/CAE системы являются “тяжелыми”, а AUTOCAD и PEPS - “легким”. В России “тяжелых“ САПР в полном смысле этого слова не разработано до сих пор. Следует отметить, что на Западе в смысле классификации САПР тоже нет устойчивой терминологии. Некоторые специалисты относят, например, CIMATRON к “средним” системам по показателю цены за одно рабочее место. Цена CIMATRONа, действительно, значительно меньше цены, скажем, CADDS5 да и требования израильской системы к вычислительным ресурсам компьютера более скромные. В отдельных публикациях “тяжелой” называется САПР, 1 копия программного обеспечения которой стоит больше 15000$.

В последние 2-3 года значительную долю продаж на рынке САПР стали составлять так называемые системы «среднего» класса, функционирующие на платформе WINDOWS 95/NT. Усеченные версии своих «тяжелых» САПР для персональных компьютеров выпустили практически все производители CAD/CAM/CAE систем. Примером могут служить, в частности, системы PT/Product фирмы PTC и Prelude фирмы MATRA DATAVISION. Большая гамма новых «средних» САПР выпущена рядом американских фирм: Solid Works97(Solid Works Corp.), Solid Edge(Intergraph Corp.), Microstation 95(Bentley Systems), Autodesk Mechanical Desktop (Autodesk Ltd.).

Попробуем, теперь, решить одну задачу. Представим себе, что мы должны принять решение о закупке для своего предприятия зарубежной CAD/CAM/CAE системы. Что нам выбрать? Объективный сравнительный анализ систем, естественно, нам не даст ни одна фирма. Дилеры и дистрибьютеры всех мастей хвалят, конечно, только свои системы. Тот же CIMATRON, например, говорит, что по динамике числа продаж он занимает 1 место в мире. Показатель, разумеется, хороший, но система, которою в прошлом году, скажем, купили 2 предприятия, а в этом году - 10, будет иметь рост продаж в 500% , но это не значит,что система, имеющая худший показатель, хуже. В компьютерных журналах сравнительный анализ CAD/CAM/CAE систем также может страдать субъективностью, потому что многие статьи пишутся с определенными целями. Попробуем, однако, высказать некоторые соображения на этот счет.

Прежде всего, следует заметить, что большим заблуждением многих руководителей является мнение о том, что на Западе все предприятия работают с “тяжелыми” САПР-ами. Наибольший эффект от внедрения CAD/CAM/CAE систем получен в авиастроении, автомобилестроении, судостроении и т.п., т.е. в производстве сложных и дорогих изделий. Поэтому, если наше предприятие проектирует и изготовляет болты и гайки, то, может быть, стоит ограничиться покупкой “средней” или “легкой” САПР, а, может быть, надо подумать и о приобретении отечественной разработки. Но об этом позднее.

Все же, CAD/CAM/CAE системы на Западе покупают, “значит это кому-нибудь нужно”. Хорошим показателем качества системы “у них” является показатель объема продаж. Приведем, например, данные за 1994 г.

1. CV- 227 млн. $ - 17% от суммы всех контрактов на поставку CAD/CAM/CAE систем.

(По оценкам некоторых аналитиков в 1995-1996 гг. На первое место по объему продаж вышла фирма РТС).

Как видим, на остальных мало что остается. Во всяком случае, DELCAM и CIMATRON не входят даже в десятку. Здесь, правда, не учитывались системы на “персоналках”.

Теперь о технических характеристиках.

Из источников, заслуживающих доверия, можно сделать вывод, что CAD -подсистема лучше всего реализована в системе CATIA. Речь идет именно о моделировании объектов, а не о сборке изделий и проектировании чертежей.

Подсистема САМ (имеются в виду ЧПУ-шные задачи) предпочтительней у UNIGRAPHICS и Pro/Engineer. Pro/Engineer также обладает наиболее органичными функциями параметризации изделия в САD подсистеме.

Наиболее полная подсистема CAE- во французких системах CATIA и EUCLID.

Наилучшая подсистема управления информацией и наибольшая “интегрированность”- у мирового лидера N 1 , системы CADDS5.

Наилучший показатель “производительность/цена” - у CIMATRON-а. У него же, видимо, ввиду известной демографической “близости”, наилучшая документация на русском языке.

Этот анализ можно продолжить, но, думается, -”не стоит”. Главное, о чем следует помнить - это то, что при выборе системы необходимо аналитически мыслить и, опять же, понимать диалектику. Кажется очевидным, что если нам нужна система для проектирования управляющих программ для 5-ти координатного фрезерного станка, то следует искать CAM - систему, наилучшую по этому показателю. Однако, это делать надо не всегда. Например, плохой постпроцессор может все испортить.

Перейдем теперь к рассмотрению отечественных разработок. Как мы уже отмечали, национальные системы работают, в основном, “на платформе” MS DOS. МS WINDOWS версии систем представляют собой, чаще всего, адаптацию под новую ОС только «головной» части системы, а ядро остается без изменений.

Из наиболее распространенных разработок, имеющих, по крайней мере, несколько сот инсталляций в различных отраслях промышленности, следует назвать системы “КОМПАС” АО “АСКОН”(г.Санкт-Петербург) и “СПРУТ” АО “СПРУТ-Технологии”(г.Набережные Челны). В последнее время в Уральском регионе стала продаваться “московско-ижевская” система ADEM. Ее распространителем является екатеринбургское представительство фирмы BEE PITRON, то самое, которое продает и CAD/CAM/CAE систему CIMATRON.

Каковы особенности отечественных CAD/CAM/CAE систем?

Прежде всего, следует отметить историю создания этих и других САПР. Она характеризуется двумя основными моментами:

1) желанием создать “родную”CAD-cистему, альтернативную “чужому” AUTOCAD-у;

2) попыткой интегрировать давно используемые на машиностроительных предприятиях отечественные средства автоматизации подготовки управляющих программ для станков с ЧПУ в новую графическую среду, возникающую в результате разработки новой CAD-системы.

Именно поэтому разработчики CAD-подсистем для систем КОМПАС и АDEM, при разработке CAM-овской части просто использовали технологические модули других разработчиков. Так, например, “московский” графический редактор CherryCAD системы ADEM был дополнен старой “ижевской” системой КАТРАН. А графический редактор КОМПАС-ГРАФИК системы КОМПАС используется в качестве средства описания геометрии деталей для разных технологических подсистем, собранных, кажется, со всей страны. Среди них широко известная в России система автоматизации программирования объемной обработки для фрезерных станков с ЧПУ ГЕММА-3D. Эта система первоначально была разработана в одном московском НИИ, специализирующемся на проектировании вертолетов. Есть в системе КОМПАС и родной ЧПУ-модуль, который называется КОМПАС-ЧПУ, но сами разработчики рекомендуют его только для обработки деталей несложной формы. Даже CAD-подсистема, с которой и начинался КОМПАС, и развивающаяся сейчас в направлении приложений, связанных не с моделированием, а с автоматизацией подготовки конструкторской документации (подсистемы КОМПАС-КД, СПЕЦИФИКАЦИЯ и т.д.) , обычно дополняется “неродной” системой трехмерного твердотельного моделирования КИТЕЖ.

Что касается САЕ-подсистем, то в КОМПАСЕ имеется ряд пакетов программ для конструкторских расчетов, например, подсистема прочностных расчетов методом конечных элементов ЗЕНИТ. Мы не располагаем достоверной информацией о разработчиках ЗЕНИТа, но убеждены, что они также никакого отношения к разработке КОМПАСа не имели и просто продают свою систему через АО “АСКОН”.

Эта тенденция вообще характерна для всех интегрированных отечественных САПР. Как правило, они представляют собой “солянку” из различных подсистем, написанных разными разработчиками в разное время, связанных между собой наспех созданным интерфейсом(обычно, файловым).

Несколько отличается подход к созданию интегрированных “сквозных” САПР у разработчиков системы СПРУТ. Они предлагают не готовую CAD/CAM - систему, а набор инструментальных средств (включая специализированные языки), для разработки ваших собственных конструкторско-технологических САПР. Поставляют они и готовые АРМы (Автоматизированные Рабочие Места) разработчика программ с ЧПУ или пакет программ для инженерных расчетов холодной листовой штамповки, но предпочитают, чтобы свою систему вы разрабатывали сами. Такой подход заранее предполагает, что программистский уровень пользователей системы достаточно высок, однако, это бывает не всегда, особенно, на небольших предприятиях.

Резюмируя этот короткий обзор, можно сказать, что отечественные САПР относятся к классу “легких” или “средних” CAD/CAM/CAE- систем и уступают западным аналогам по возможностям и в комплексности решения конструкторско-технологических задач, несмотря на то, что отдельные элементы автоматизации проектирования в отечественных подсистемах реализованы лучше. Примером может служить система геометрического трехмерного моделирования GM+, разработанная в свое время преподавателем кафедры “Прикладная геометрия и автоматизация проектирования” УГТУ Е.И.Кацем при участии группы других преподавателей кафедры под руководством проф. Р.А.Вайсбурда. Многие вопросы моделирования в ней решены значительно эффективнее, чем в том же EUCLID-e или CIMATRON-e. В то же время, система до сих пор практически нигде по-настоящему так и не внедрена. Попытки “вставить” ее в западные коммерческие версии 3-х мерных CAD систем, насколько нам известно, ни к чему не привели. Причин здесь много, причем самой главной, на наш взгляд, является та, что Запад не хочет покупать наши САПР-овские разработки и всегда находит множество “объективных” поводов объяснить невозможность использования российского программного продукта в западных CAD/CAM/CAE- системах. Конечно, проблемы с “русским софтвэром” существуют на самом деле. Здесь и неопределенность правовых взаимоотношений между разработчиком и западным дилером, и проблемы коммуникаций, и, наконец, вполне обоснованное сомнение западных партнеров в способности российских разработчиков выполнить свои договорные обязательства в случае обнаружения каких-либо ошибок в программах.

Пожалуй, менее существенной является причина, которую многие наши разработчики по наивности считают главной. Речь идет о несоответствии оформления пользовательской документации и результатах проектирования международным стандартам. Существует иллюзия, что обеспечив в программах соответствие западным “ГОСТам” и переведя “Руководство пользователя” на английский язык, а затем вставив его в цветную картонную “коробку”, как у всех “приличных” западных систем, мы можем добиться больших успехов в продаже наших разработок на западном рынке. Это не так. Гордость разработчиков системы ADEM (фирма Omega Technologies Ltd, г.Москва) за то, что им удалось сделать, как они говорят, “единственный в России САПР-овский программный продукт, удовлетворяющий международным стандартам”, вполне понятна, но их рассказы о том, как хорошо и эффективно используется их CAD/CAM- система на американских или канадских предприятиях содержат много лукавства. Сценарий всех продаж российских САПР на Запад совершенно одинаков (речь идет не только о системе ADEM, но и, например, о CAD-системе T-FLEX CAD) и заключается в следующем. Кто-то из разработчиков или из людей, связанных с разработчиками, уезжает, скажем, в США, “на постоянное место жительства” и устраивается на работу в некую фирму. Как специалиста в области программирования и САПР его привлекают к автоматизации решения каких-либо проектных задач. Он уговаривает руководство фирмы использовать для этих целей знакомый программный продукт. Так в США появляется фирма, использующая российский САПР. Как только наш российский специалист или группа специалистов перестает работать на этой фирме, победное шествие российских разработок по “северо-американским штатам” останавливается. Никому из западных фирм никогда не придет в голову “просто так” предпочесть, к примеру, ADEM AUTOCAD-у. И можно твердо сказать, что в ближайшее время это “статус-кво” кардинально не изменится.

В заключении этого подраздела еще несколько слов о выборе САПР.

На большинстве машиностроительных предприятий России на этапе технической подготовки производства реального моделирования новых объектов не происходит. Задача конструкторов и технологов заключается, как правило, в привязке уже существующего проекта, разработанного каким-нибудь институтом, к технологическим особенностям своего предприятия. Поэтому основная часть проектных решений представляет собой рабочие чертежи, необходимые для изготовления отдельных деталей, сборочные чертежи, различного рода конструкторские спецификации, маршрутные и операционные технологические карты и пр. Средства автоматизации чертежных работ при таком подходе к подготовке производства обычно представляют собой простой двухмерный графический редактор типа AUTOCAD-а, а текстовые конструкторские и технологические документы готовятся даже без применения графических средств с помощью специализированных систем типа тех, которые, например, разрабатывает Региональный Инженерный Центр “ИСЕТЬ” при УГТУ. Они представляют собой некоторые специализированные СУБД, написанные на языках типа FoxPro.

Для изготовления обычных машиностроительных деталей на станках с ЧПУ также бывает достаточно 2-х и 2,5 координатной обработки. Трехмерная обработка необходима, в основном, для изготовления различных пресс-форм. Именно поэтому зарубежные СAD/CAM- системы закупаются крупными предприятиями, в основном, для отделов Главного Технолога, а CAD- подсистема используется в этом случае только для описания геометрии трехмерного объекта с целью его последующего изготовления на станке с ЧПУ. Ни о каком “сквозном” САПР, в данном случае, говорить не приходится.

Идея родилась в моей голове от нашей бедности наших потребностей. Для тех, кто решил освоить какой-нибудь САПР, казалось бы, выбор должен быть всегда очевиден - это должен быть тот же САПР, что используется на предприятии, где работаешь, или же хочешь работать. Причины, по которой трудно сделать выбор могут быть разными, к примеру – у всех ленивых возникнет вопрос: «А что освоить легче?» или «Пойдет ли он на моем компьютере, если я хочу сделать нечто и в определённом количестве?». На выбор может так же повлиять наличие в программе нужных функций и, как это не странно прозвучит, цена. На эти и возможно некоторые другие вопросы ответы под катом.
ФОТО!!!

Виновники торжества:

Безусловно, САПР систем куда больше, но нам не хватило бы ни времени, ни сил на то, чтобы все их вам представить. Встречайте избранных.

Кратко о каждом. Плюсы и минусы:

Autodesk AutoCAD – один из самых распространенный CAD систем, помимо просто версии под названием Autodesk AutoCAD есть рад специализированных, таких как: AutoCAD для Mac, AutoCAD Architecture, AutoCAD Civil 3D, AutoCAD Electrical, AutoCAD LT, AutoCAD Map 3D, AutoCAD Mechanical, AutoCAD MEP, AutoCAD Plant 3D, AutoCAD P&ID, AutoCAD Raster Design, AutoCAD Revit Architecture Suite, AutoCAD Revit MEP Suite, AutoCAD Revit Structure Suite, AutoCAD Structural Detailing, AutoCAD Utility Design. Старые версии не сильно требовательны к железу, но начиная с 2010 версии работать на компьютере года 2006-го будет несколько затруднительно. Так же замечено, что AutoCAD 2010-2012 заведомо медленнее работает на интегрированных чипах Intel, в чем мы впоследствии убедимся, причем как в 3D, так и в 2D. Спасает эту ситуацию даже самый слабый GPU, который минимально соответствует требованиям AutoCAD, к примеру на чипе NVidia 200 Series.

Autodesk Inventor – САПР ориентированный большей частью на машиностроение, причем 2D часть программы развита настолько плохо, что оставляет желать лучшего. Практически весь набор дополнительных утилит представлен только в 3D части программы, в то время как в 2D нам остается довольствоваться только ассоциативными видами и минимальным набором для черчения. Недостаток в 2D полностью компенсирует AutoCAD Mechanical, ориентированный в свою очередь на оформление чертежей. Требования к железу у Inventor-а одновременно и небольшие, и в то же время достаточно высоки. Все зависит от того, что вы хотите «напроектировать». Как обстоят дела с версиями ниже 2010 сказать не могу но, как и в случаи с AutoCAD, компьютер нужен посерьезнее.

DSS SolidWorks – очень неплохая система, имеет достаточной понятный интерфейс, ничего из ряда вот выходящего я в ней не нахожу, но не могу отметить способность данной программы распознавать дерево построения сторонних CAD систем, а так же расстроить любителей халявы, пиратская версия встает кривовато. Делайте выводы.

АСКОН КОМПАС 3D – САПР, популярный, наверное, только в России. Основным полюсом у него будет – изначально русский интерфейс (хотя предыдущие системы этим не страдают), и очень обширная библиотека стандарта ГОСТ. Если в случаи с AutoCAD, при не удовлетворительной производительности на старом компьютере есть возможность поставить более старую версию, то в случаи с КОМПАСом - это будет не целесообразно, т.к. системные требования, начиная с 5-ой версии не сильно менялись. Также преимуществом является возможность сохранять работы в старой версии, т.к. большинство систем, благодаря своеобразной политике компании, такой функции лишены.

Подопытные кролики Тестируемые машины:













Проводимый тест:

В общем и целом ничего сложного.
Все настройки программ касательно графики будут стоять на качество отрисовки, но с минимум визуализации (в последствии некоторые проблемы мы постараемся решить и покажем как).
Задачу мы поставим нашим подопытным достаточно простую, с точки зрения реализации – массив из пружинок.

Постепенно увеличивая массив, можно будет увидеть, как живет программа при разной нагрузке. Отметим, что пружина, сама по себе один из самых сложный примитивов, если ее можно таковым назвать, следовательно, результаты будут даны с запасом.

Перед тестом хочу немного остановиться и рассказать вкратце, что из себя представляют тестируемые машины, для тех, кто не сильно разбирается в комплектующих и в терминологии вообще.
Разделяя компьютеры на рабочие станции и домашние подразумевается, что набор комплектующих в первых будет иметь несколько специфические параметры, названия и цену (как правило, более высокую). Рабочие станции, в свою очередь, тоже можно разделить на достаточно большое дерево, ибо для каждого типа работы нужно что-то свое, рассматривать в этой статье мы их не будем и выделим только представителей, которых называют графическими станциями. Что же отличает эти графические станции от обычных компьютеров? Ответ очень простой, в большинстве случаев это только наличие профессионального графического адаптера. В принципе из любого мощного игрового компьютера можно сделать графическую станцию просто поменяв видеокарту, но есть одно «но». Графические станции – это инструмент, на котором выполняются задачи, в частном случаи это инженерные, ответственные, сложные, достаточно трудоемкие (и как следствие высоко оплачиваемые) и этот инструмент должен удовлетворять пользователя не только по скорости работы, но и по надежности и своеобразной устойчивости к сбоям, и когда производитель выпускает комплектующие, предназначенные для профессиональной работы, он просит за них соответствующую цену, поэтому, для удовлетворяющей вас работы, просто смены видеокарты на профессиональную, может быть недостаточным.

Профессиональная графика на сегодняшний день для САПР систем представлена 3-мя компаниями:

  • NVidia (серия Quadro и Quadro FX)
  • ATI(AMD) (серия FirePro)
  • Intel (интегрированная графика в процессорах семейства Xeon E3, E7)
Производители от души «распиарили» свои продукты (все это читайте на официальных сайтах), но на деле раскрывается страшная истина. Те из вас, кто достаточно любопытен, наверняка заметили, что вышеупомянутые компании в профессиональной графике используют те же графические чипы, что и в игровых и бюджетных видеокартах, а деньги (причем не малые) просят с нас в большей части только за более качественное изготовление и оптимизацию программной части, т.е. драйверов. Но, как это ни прискорбно, для повышения производительности придется купить, то, что предлагают, а на сколько это целесообразно, каждый решит для себя сам.
По поводу ноутбуков, у нас будут представлены по одному представителю от бизнес и домашней серии.

И так, поехали:

Xeon
Показал вполне достойные результаты, последний тест выполнил с упрощением, смог задействовать два потока в нагрузке процессора, а вот нагрузка видеокарты была реализована только примерно на 50 процентов. В тонированно-каскадном тесте показал результат лучше, чем остальные системы.
Для выполнения теста понадобилось 747 Mb RAM

FX580
Как это ни странно, результаты не намного ниже, чем у предыдущей машины, однако, стоит отметить, что, если нагрузка на процессор была аналогичная, то видеокарта тут выложилась по полной. Также очень необычный «жор» в оперативной памяти – 2390 метров.
Для выполнения теста понадобилось 2390 Mb RAM

i7 Intel HD
На удивление результаты первых 4-х тестов аналогичны, как и на “FX580”, однако тест 50 на 50 был проведен с упрощением, равно как и последний.
Для выполнения теста понадобилось 624 Mb RAM
Использовано 2 потока

GTX460
Несмотря на заявления производителей и то, что процессор не i7, а i5 и предыдущего поколения, результат выше, чем у «второго» и не многим меньше «первого». Предположительно будет меньше стабильность работы, но в целом результат достаточно удивительный.
Для выполнения теста понадобилось 652 Mb RAM

DualCore
Последние 2 теста – провалены. Система зависла и построить массив не смогла. Мною было честно дано на построение 30 минут, но увы, результата я так и не дождался. Результаты остальных тестов значительно ниже. И вообще вывод – компьютер не пригоден для работы в CAD системах, т.ч. ссылаться на этот тест в сравнениях не будем.
Для выполнения теста понадобилось 358 Mb RAM
Использован 1 поток

ATI
Провалены последние 2 теста, система не смогла построить массив. Результат остальных – ниже, и удовлетворительной работы на больших сборках ждать от него не приходится. Нагрузка на карту была 100 % на протяжении всего теста.
Для выполнения теста понадобилось 301 Mb RAM

i5
Практически идентичные результаты с третьей машиной (i7 Intel HD)
Для выполнения теста понадобилось 598 Mb RAM
Использован 1 поток

Xeon
Производительность на уровне с Inventor-ом, при этом нагрузка на систему была все 25%, как для видеокарты, так и для процессора (один поток).
Для выполнения теста понадобилось 412 Mb RAM

FX580
Для выполнения теста понадобилось 434 Mb RAM

i7 Intel HD
Выдал результаты ниже, но не заметные для восприятия.
Для выполнения теста понадобилось 715 Mb RAM
Использован 1 поток

GTX460
Для выполнения теста понадобилось 517 Mb RAM

DualCore
Для выполнения теста понадобилось 290 Mb RAM
Использовано 2 потока (сомнительно)

ATI
Хоть не смог построить только самый последний тест, тесты 50 на 50 и 100 на 100 – выполнены с упрощением, остальные тесты показали производительность, на уровне с остальными машинами (за исключением DualCore)
Для выполнения теста понадобилось 388 Mb RAM

i5
Для выполнения теста понадобилось 526 Mb RAM
Использован 2 потока (сомнительно)

Xeon
Как и AutoCAD, смог нагрузить только один поток. Средняя нагрузка на видеокарту – 50 процентов, как и предыдущие системы – провалил тест 100 на 100, и практически провалил тест 50 на 50.
Для выполнения теста понадобилось 196 Mb RAM

FX580
Выдал практически идентичную производительность. Нагрузка на видеокарту тоже возросла.
Для выполнения теста понадобилось 177 Mb RAM

i7 Intel HD
Показал аналогичный результат, как и на всех предыдущих машинах, такое ощущение, что ему видеокарта вообще не нужна.
Для выполнения теста понадобилось 268 Mb RAM
Использован 1 поток

GTX460
… без комментариев.
Для выполнения теста понадобилось 168 Mb RAM

DualCore
Для выполнения теста понадобилось 98 Mb RAM
Использован 1 поток

ATI
Провален тест 50 на 50 и 100 на 100, в остальном – как обычно.
Для выполнения теста понадобилось 186 Mb RAM

i5
Провален тест 50 на 50 и 100 на 100.
Для выполнения теста понадобилось 132 Mb RAM
Использовано 1 поток

Xeon
Оказался самым прожорливым, хоть как и 2 предыдущих системы, использовал ресурсы только одного потока, задействовал почти 100% видеокарты, показал сравнительно более лучшие результаты в тесте с тонировкой без каркаса.
Для выполнения теста понадобилось 323 Mb RAM

FX580
Выдал результаты ниже почти в 2 раза.
Для выполнения теста понадобилось 279 Mb RAM

ATI
Наличие дискретной карты дало свои результаты, но удовлетворительной работы в сборках более 100 деталей ждать не приходится.
Для выполнения теста понадобилось 261 Mb RAM

Вывод по сравнению CAD систем:

Inventor: может использовать многозадачность, что беccпорно плюс, требователен к оперативной памяти, во всяком случаи задействовал ее больше чем все остальные, показал неплохую производительность на интегрированных видеокартах, но задействовал всего половину ресурсов от Quadro 4000. (есть предположение, что на Quadro 2000 производительность будет аналогичная, так же, есть предположение, что на игровых картах Radeon производительность будет больше, чем у аналогов Nvidia)

AutoCAD: продемонстрировал весьма достойную производительность, однако ресурсов задействовал меньше, из этого можно сделать вывод, что конфигурация выше второй машины (FX580) особого смысла не имеет.

КОМПАС 3D: показал одинаковую производительность на тестируемых стационарных машинах, прирост производительности практически минимальный, т.ч. для работы будет достаточно Intel HD 3000, но покупка профессиональной графики выше Quadro 600 будет не оправдана. Ноутбуки показали вполне сравнимый результат со стационарными машинами, хотя тест с каскадной отрисовкой 50 на 50 был не удовлетворительным.
В общем и целом для КОМПАСа желательно наличие дискретной графики, но при покупке нового компьютера с интегрированной HD 3000, стоит задуматься.

SolidWorks: пожалуй самый требовательный CAD к графической части, аппаратного ускорения на интегрированных картах он не дал, а значит дискретная графика обязательна для тех, кто будет работать со сборками даже в 100 деталей (возможно это исправлено в 2012 версии). На первой машине результат вполне достойный, с тестом 100 на 100 он справился лучше остальных, но на остальных машинах результат напоминает то, что показал КОМПАС.

Итак, если у вас уже есть достаточно мощная машина, даже игровая, смело выбирайте себе любую CAD-систему для ее изучения. Наличие профессиональной графики дает прирост, но смысл ее приобретать если вы не уверены, что будете профессионально работать, пожалуй не стоит.

Если компьютер старый, но все же мощнее, нашего «позорника» (DualCore), то изучить работу тоже можно во всех системах, но работать с большими сборками (больше 100 деталей) даже при наличии профессиональной графики, будет затруднительно.

К ноутбукам требования серьезнее, т.к. сделать замену комплектующих там сложнее, но в целом все примерно тоже самое.

Для SolidWorks наличие дискретной графики обязательно!

Данный сравнительный анализ CAD/CAM-систем был выполнен для машиностроительного предприятия с целью решения следующих основных задач:

  • повышение производительности работы конструкторского бюро по выпуску конструкторской и технологической документации (КД и ТД);
  • снижение сроков подготовки металлообрабатывающего производства;
  • организация нового производства штампов и пресс-форм.

Рассматривались CAD/CAM-системы, распространенные на российском рынке. При составлении перечня учитывалась информация российской прессы, печатные материалы фирм-разработчиков и отзывы пользователей СНГ.

Перечень в алфавитном порядке имеет следующий вид:

  • ADEM v 6.1 Trial
  • Autocad v 2000
  • CADDS v 5
  • Компас v 5.0
  • MicroStation Modeler 95
  • Pro/Engineer v 2000i
  • SolidEdge v 6.0
  • SolidWorks v 99
  • T-Flex v 6.2
  • Unigraphics v.15

Некоторые продукты не вошли в данный перечень по следующим причинам:

  • отсутствие возможности провести опытную эксплуатацию;
  • отсутствие возможности автономной работы без совместного применения с другими CAD/CAM-продуктами.

Методика испытаний

Три указанные выше основные задачи были разложены на 20 подзадач (см. табл. 1).

Для исследования возможностей продуктов предпринимались попытки решения ряда примеров, характерных для данных подзадач.

Например, для разделов «Черчение» и «Поддержка отечественных стандартов» предлагалось выполнить чертежи в соответствии с правилами ЕСКД (рис. 1).

Для «Объемного моделирования» предлагалось несколько характерных моделей (рис. 2 , ).

Для «2,5x-фрезерования» были подготовлены примеры карманов с вертикальной и криволинейной стенками (рис. 4).

Для «Объемного фрезерования» были подготовлены модели элементов пресс-форм (рис. 5).

В разделе «Адаптация к станочному парку» рассматривались библиотеки постпроцессоров в первую очередь применительно к отечественным системам управления станками. Также производились попытки написания своих постпроцессоров.

«Создание прикладных САПР» исследовалось теоретически по документации.

Для оценки «Редактирования сканированного изображения» предлагалось внести изменения в текст и графику сканированного чертежа формата A1 с последующим выводом на плоттер.

«Поддержка пользователей» проверялась по качеству русскоязычной документации и HELP. Важным показателем являлось также наличие представительства в России и доступность телефонной и e-mail-связи.

Методика оценки

Качество систем оценивалось по трехбалльной системе. Наивысший балл присваивался в том случае, если все поставленные тесты выполнялись. Частичное выполнение засчитывалось как удовлетворительное. Невыполнение всех тестов выносило оценку «плохо». При окончательном формировании оценки учитывались также личные впечатления специалистов, испытывавших систему, и время на освоение и решение задач.

Результаты сравнительного анализа систем по всем 20 показателям представлены в табл. 2 .

Для косвенной проверки полученных результатов было изучено позиционирование систем в структуре российских предприятий. При этом рассматривалась обобщенная структура, традиционно состоящая из следующих подразделений:

  • проектное бюро (ПБ) - создание общих видов, общей компоновки;
  • конструкторское бюро (КБ) - конструирование, выпуск КД;
  • технологическое бюро (ТБ) - создание техпроцессов, выпуск ТД;
  • отдел ЧПУ - программирование станков с числовым программным управлением.

Для каждого продукта рассматривался доступный список официальных пользователей любых версий системы. Оценка отражает лишь распределение внутри списка для каждого продукта и ни в коей мере не показывает соотношение частоты применения различных продуктов (табл. 3).

ADEM применяется в основном для выпуска КД и ТД. Очень часто - для подготовки УП для ЧПУ и для плоского и объемного моделирования изделий, оснастки и пресс-форм. Реже используется для объемной компоновки.

Autocad применяется для выпуска КД и ТД, не отягощенных требованиями отечественных стандартов; реже - для плоских компоновок.

CADDS чаще всего применяется для объемного моделирования и компоновки изделий, оснастки, пресс-форм, а также для подготовки УП для ЧПУ. В конструкторских подразделениях не встречается.

Компас применяется в основном для выпуска чертежной КД, реже для ТД.

Pro/Engineer чаще всего используется для объемных компоновок агрегатов типа двигатель или реактор, для разводки трубопроводов. Для выпуска КД и ТД применяется редко.

SolidEdge, SolidWorks, MicroStation Modeler 95 применяются для объемного моделирования несложных машиностроительных изделий и узлов (электродвигатель, электрофен, насос), для иллюстраций инструкций по эксплуатации, отчетов и рекламных брошюр.

Для выпуска КД и ТД практически не применяются.

T-Flex применяется для выпуска чертежей типовых деталей машиностроения. В объемном моделировании не используется.

Unigraphics чаще всего применяется для объемного моделирования изделий, оснастки и пресс-форм. Применяется и для объемной компоновки изделий типа корпус, двигатель. Относительно часто применяется для ЧПУ. В конструкторских подразделениях практически не встречается.

По результатам тестирования и опыту применения систем на предприятиях исходный перечень был разделен на три группы. К первой группе были отнесены претенденты на сопровождение проектирования; ко второй - системы автоматизации выпуска КД; к третьей - интегрированные CAD/CAM-системы, поддерживающие ЧПУ (см. табл. 4).

Заключение

Результаты сравнительного анализа могут быть распространены и на другие машиностроительные предприятия. При этом следует учитывать следующие моменты:

  • система тестов должна быть разработана исходя из реальных задач конкретного производства;
  • тестирование желательно производить с привлечением широкого круга сотрудников, в том числе и не имевших опыта работы с CAD/CAM-системами;
  • необходимо дать системе возможность показать себя в различных подразделениях на разных задачах.

Не удивляйтесь, если в результате тестирования ваше личное представление о продукте коренным образом изменится, - действительность иногда имеет мало общего с красивыми картинками в журналах и рекламных проспектах. Чужой опыт также имеет большую ценность, даже если это и не совсем «бескорыстный свидетель». Любая информация имеет свойство устаревать, тем более в столь бурно развивающейся области, как программное обеспечение для промышленности.

«САПР и графика» 8"2000

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

В промышленном производстве давно царит жесткая конкуренция. Чтобы выжить в этих нелегких условиях предприятиям приходится как можно быстрее выпускать новые изделия, снижать их себестоимость и повышать качество. В этом им помогают современные системы автоматизированного проектирования (САПР), позволяющие облегчить весь цикл разработки изделий -- от выработки концепции до создания опытного образца и запуска его в производство. Тем самым значительно ускоряется процесс создания новой продукции без ущерба качеству. Поэтому сейчас без САПР не обходится ни одно конструкторское или промышленное предприятие. И хотя на долю указанных систем приходится лишь около 3% рынка ПО, они играют очень важную роль, поскольку помогают создавать товары, без которых невозможно представить нашу повседневную жизнь: автомобили, самолеты, бытовые приборы, промышленное оборудование и, следовательно, являются одной из движущих сил современной промышленности и мировой экономики.

Прогресс науки и техники, потребности в новых промышленных изделиях обусловливают необходимость выполнения проектных работ большого объема.

Проектирование машин и систем машин является многоэтапным динамическим процессом. Это процесс творческий, многоплановый и достаточно трудоемкий. Как правило, проектирование машин, в том числе подъемно - транспортных, строительных и дорожных машин и оборудования, осуществляется большим коллективом различных специалистов с использованием многочисленных расчетных, экспериментальных, эвристических методов и приемов.

Требования, предъявляемые к качеству проектов, срокам их выполнения, оказываются все более жесткими по мере увеличения сложности проектируемых объектов и повышения важности выполняемых ими функций. Удовлетворить эти требования с помощью простого возрастания численности проектировщиков нельзя, так как возможность параллельного проведения проектных работ ограничена, и численность инженерно-технических работников в проектных организациях страны не может быть заметно увеличена. Решить проблему можно на основе автоматизации проектирования - широкого применения вычислительной техники.

Цель автоматизации проектирования - повышение качества, снижение материальных затрат, сокращение сроков проектирования и ликвидация тенденции к росту числа инженерно-технических работников, занятых проектированием, повышение производительности их труда.

САПР представляет собой организационно-техническую систему, состоящую из комплекса средств автоматизации проектирования, взаимосвязанного с подразделениями проектной организации и выполняющую автоматизированное проектирование.

1 . Общее описание систем автоматизированного проектирования, их назначения и областей применения

1.1 Общее описание систем автоматизированного проектирования

САПР -- организационно-техническая система, входящая в структуру проектной организации и осуществляющая проектирование при помощи комплекса средств автоматизированного проектирования (КСАП).

Взаимодействие подразделений проектной организации с комплексом средств автоматизации проектирования регламентируется организационным обеспечением.

Основная функция САПР состоит в выполнении автоматизированного проектирования на всех или отдельных стадиях проектирования объектов и их составных частей.

При создании САПР и их составных частей следует руководствоваться следующими основными принципами:

Системного единства;

Совместимости;

Типизации;

Развития.

Принцип системного единства должен обеспечивать целостность системы и системную связность проектирования отдельных элементов и всего объекта проектирования в целом (иерархичность проектирования).

Принцип совместимости должен обеспечивать совместное функционирование составных частей САПР и сохранять открытую систему в целом.

Принцип типизации заключается в ориентации на преимущественное создание и использование типовых и унифицированных элементов САПР. Типизации подлежат элементы, имеющие перспективу многократного применения. Типовые и унифицированные элементы, периодически проходят экспертизу на соответствие современным требованиям САПР и модифицируются по мере необходимости.

Создание САПР с учетом принципа типизации должно предусматривать:

Разработку базового варианта КСАП и (или) его компонентов;

Создание модификации КСАП и (или) его компонентов на основе базового варианта.

Принцип развития должен обеспечивать пополнение, совершенствование и обновление составных частей САПР, а также взаимодействие и расширение взаимосвязи с автоматизированными системами различного уровня и функционального назначения.

Работы по развитию САПР, модернизации составных частей САПР выполняют по техническому заданию.

Как законченное изделие САПР является совокупностью следующих компонентов:

· технических средств, обеспечивающих автоматизированное получение проектных решений;

· программ, управляющих работой технических средств и выполняющих проектные процедуры;

· данных, необходимых для выполнения программ;

· документации, содержащей все необходимые сведения для выполнения автоматизированного проектирования с помощью данной САПР.

Для реализации задач пользователей необходим программный инструментарий - точные и подробные инструкции, содержащие последовательность действий по обработке информации. Сам по себе компьютер не обладает знаниями ни в одной области своего применения, все эти знания сосредоточены в выполняемых на компьютере программах. Программное обеспечение САПР включает комплекс программ различного назначения, обеспечивающих функционирование компьютерной системы и решение задач автоматизированного проектирования.

При структурировании ПО используют понятия ППП, программных систем, комплексов и компонентов. Пакет прикладных программ-совокупность программ, объединенных общностью применения, т.е. возможностью совместного исполнения или ориентацией на определенный класс задач. Комплекс по определению в Единой системе программной документации (ЕСПД) - сложная программа, которую можно разделить на составные части. Компоненты - составные части программ, имеющие свое функциональное назначение. Понятие «комплекс - компонент» аналогичны понятиям «система - элемент» в блочно-иерархическом проектировании сложных систем, следовательно, на каждом иерархическом уровне проектирования ПО эти понятия наполняются своим конкретным содержанием. Так, операционная система ОС ЕС - комплекс, а компилятор с ФОРТРАНА - его компонент. На уровне проектирования компилятора он рассматривается как комплекс, а синтаксический анализатор и генератор кода - его компоненты.

Составными структурными частями САПР, жестко связанными с организационной структурой проектной организации, являются подсистемы, в которых при помощи специализированных комплексов средств решается функционально законченная последовательность задач САПР.

По назначению подсистемы разделяют на проектирующие и обслуживающие.

Проектирующие подсистемы. Они имеют объектную ориентацию и реализуют определенный этап (стадию) проектирования или группу непосредственно связанных проектных задач.

Примеры проектирующих подсистем: эскизное проектирование изделий, проектирование корпусных деталей, проектирование технологических процессов механической обработки.

Обслуживающие подсистемы. Такие подсистемы имеют общесистемное применение и обеспечивают поддержку функционирования проектирующих подсистем, а также оформление, передачу и вывод полученных в них результатов.

Примеры обслуживающих подсистем: автоматизированный банк данных, подсистемы документирования, подсистема графического ввода-вывода.

Формирование и использование моделей объекта проектирования в прикладных задачах осуществляется комплексом средств автоматизированного проектирования (КСАП) системы (или подсистемы).

Структурными частями КСАП системы являются различные комплексы средств, а также компоненты организационного обеспечения.

Комплексы средств относят к промышленным изделиям, подлежащим изготовлению, тиражированию и применению в составе САПР, и документируют как специфицируемые изделия.

Комплексы средств подразделяют на комплексы средств одного вида обеспечения (технического, программного, информационного) и комбинированные.

Комплексы средств одного вида обеспечения содержат компоненты одного вида обеспечения; комплексы средств комбинированные -- совокупность компонентов разных видов обеспечения.

Комбинированные КСАП, относящиеся к продукции производственно-технического назначения, подразделяются на:

· программно-методические (ПМК);

· программно технические (ПТК).

Программно-методический комплекс представляет собой взаимосвязанную совокупность компонентов программного, информационного и методического обеспечения (включая компоненты математического и лингвистического обеспечении), необходимую для получения законченного проектного решения по объекту проектирования (одной или нескольким его частям или объекту в целом) или выполнения унифицированных процедур.

В зависимости от назначения ПМК подразделяют на общесистемные и базовые.

Общесистемные ПМК направлены на объекты проектирования и вместе с операционными системами ЭВМ являются операционной средой, в которой функционируют базовые комплексы.

Базовые ПМК могут быть проблемно-ориентированными и объектно-ориентированными, в зависимости от того, реализуют ли они проектные процедуры унифицированные или специфические для определенного класса объектов.

Проблемно-ориентированные ПМК могут включать программные средства, предназначенные для автоматизированного упорядочения исходных данных, требований и ограничений к объекту проектирования в целом или к сборочным единицам; выбор физического принципа действия объекта проектирования; выбор технических решений и структуры объекта проектирования; оценку показателей качества (технологичности) конструкций, проектирование маршрута обработки деталей.

Объектно-ориентированные ПМК отражают особенности объектов проектирования как совокупной предметной области. К таким ПМК, например, относят ПМК, поддерживающие автоматизированное проектирование сборочных единиц; проектирование деталей на основе стандартных или заимствованных решении; деталей на основе синтеза их из элементов формы; технологических процессов по видам обработки деталей и т. п.

Программно-технический комплекс представляет собой взаимосвязанную совокупность компонентов технического обеспечения.

В зависимости от назначения ПТК различают: автоматизированные рабочие места (АРМ); центральные вычислительные комплексы (ЦВК).

Комплексы средств могут объединять свои вычислительные и информационные ресурсы, образуя локальные вычислительные сети подсистем или систем в целом.

Структурными частями комплексов средств являются компоненты следующих видов обеспечения: программного, информационного, методического, математического, лингвистического и технического.

Компоненты видов обеспечения выполняют заданную функцию и представляют наименьший (неделимый) самостоятельно разрабатываемый (или покупной) элемент САПР (например, программа, инструкция, дисплей и т. п.). Эффективное функционирование КСАП и взаимодействие структурных частей САПР всех уровней должно достигаться за счет ориентации на стандартные интерфейсы и протоколы связи, обеспечивающие взаимодействие комплексов средств.

Эффективное функционирование КСАП должно достигаться за счет взаимосогласованной разработки (согласование с покупными) компонентов, входящих в состав комплексов средств.

КСАП обслуживающих подсистем, а также отдельные ПТК этих подсистем могут использоваться при функционировании всех подсистем.

Общесистемные ПМК включают в себя программное, информационное, методическое и другие виды обеспечении. Они предназначены для выполнения унифицированных процедур по управлению, контролю, планированию вычислительного процесса, распределению ресурсов САПР и реализации других функций, являющихся общими для подсистем или САПР в целом.

Примеры общесистемных ПМК: мониторные системы, системы управления БД, информационно-поисковые системы, средства машинной графики, подсистема обеспечения диалогового режима и др.

Мониторные системы управления функционированием технических средств в САПР. (Монитор - управляющая программа).

Основными функциями мониторных систем являются: формирование заданий с контролем пакета задач, требуемых и наличных ресурсов, права доступа к базе данных с установлением приоритета и номера очереди; обработка директив языков управления заданиями и задачами, а также реакция на прерывания с перехватом управления, анализом причин и их интерпретацией в терминах, понятных проектировщику; обслуживание потоков задач с организацией диалогового и интерактивно-графического сопровождения в условиях параллельной работы подсистем; управление проектированием в автоматических режимах с анализом качества исполнения проектных операций, проверкой критериев повторения этапа или продолжения маршрута, выбором альтернативных вариантов маршрута; ведение и оптимизация статистики эксплуатации системы; распределение ресурсов САПР с учетом приоритетов заданий, задач и подсистем, плановых заданий и текущих указаний и запросов; защита ресурсов и данных от несанкционированного доступа и непредусмотренных воздействий.

Информационно-поисковые системы (ИПС) в САПР выполняют такие функции, как заполнение информационного фонда (инфотеки) сведениями; арифметическую обработку цифровых данных и лексическую обработку текстов; обработку информационных запросов с целью поиска требуемых сведений; обработку выходных данных и формирование выходных документов. Особенности ИПС заключаются в том, что запросы к ним формируются не программным путем, а непосредственно пользователями, и не на формальном языке, понятном монитору, а на естественном языке в виде последовательности ключевых слов -- дескрипторов. Перечень дескрипторов, содержащихся во всех принятых на хранение описаниях, составляет словарь дескрипторов, или тезаурус, и предназначен для формирования поисковых предписаний.

Существуют и более сложные ИПС по сравнению с дескрипторными. Важную роль в них играет информационно-поисковый язык, в котором учитываются семантические взаимоотношения между информационными объектами. Это позволяет уменьшить число неправильно распознаваемых языковых конструкций, а обработку запросов производить на основе различных критериев смыслового соответствия.

Система управления базами данных (СУБД) -- программно-методический комплекс для обеспечения работы с информационной базой, организованной в виде структуры данных.

Банки данных являются наиболее высокой формой организации информации в больших САПР. Они представляют собой проблемно-ориентированные информационно-справочные системы, обеспечивающие ввод необходимой информации, не зависимые от конкретных задач ведения и сохранения информационных массивов и выдачи необходимой информации по запросам пользователей или программ. В банках данных используется информация фактографического вида.

СУБД выполняет следующие основные функции: определение баз данных, т. е. описание концептуального, внешнего и внутреннего уровней схем; запись данных в базу; организацию хранения, выполняя изменение, дополнение, реорганизацию данных; предоставление доступа к данным (поиск и их выдача).

Для определения данных и доступа к ним в СУБД имеются языковые средства. Так, определение данных, состоящее в описании их структур, обеспечивается с помощью языка определения данных. Функции доступа к данным реализуются с помощью языка манипулирования данными и языка запросов. По типу поддерживаемых структур различают следующие виды СУБД:

· иерархический

· сетевой

· реляционный

Программно-методические комплексы машинной графики обеспечивают взаимодействие пользователя с компьютером при обмене графической информацией, решение геометрических задач, формирование изображений и автоматическое изготовление графической информации. Графическое взаимодействие пользователя с компьютером (так называемый графический метод доступа) базируется на подпрограммах ввода-вывода, которые обеспечивают прием и обработку команд от устройства ввода-вывода и выдачу управляющих воздействий на эти устройства. Решение геометрических задач (геометрическое моделирование) сводится к преобразованию графической информации, которое представляет собой выполнение в той или иной последовательности элементарных графических операций типа сдвиг, поворот, масштабирование и т. п. Для геометрического моделирования используется ПМК, в котором кроме отдельных элементарных графических операций могут быть реализованы графические преобразования трехмерных изображений, процедуры построения проекций, сечений и т. п. В ПМК графических преобразований обычно предусматриваются средства для формирования некоторых часто используемых изображений, управления графической базой данных, отладки графических подпрограмм.

Диалоговый режим обеспечивается программно-методическими комплексами, осуществляющими ввод, контроль, редактирование, преобразование и вывод графической и/или символьной информации. Диалоговый удаленный ввод заданий обеспечивает ввод и редактирование заданий через каналы связи, выполнение заданий в пакетном режиме и вывод результатов через линии связи на удаленные терминалы. В САПР могут использоваться как диалоговые ПМК общего назначения, так и специализированные. ПМК общего назначения целесообразно применять на начальных стадиях создания и эксплуатации САПР для отработки и проверки методологии проектирования, технологии обработки данных и прикладных программ. В дальнейшее возможна модификация ПМК с учетом специфических требований по организации диалога в САПР. При этом необходимо учитывать наличие диалогового или пакетного режима обработки запросов; ориентацию системы на пользователя непрограммиста; возможность расширения системы путем включения диалоговых прикладных программ на языках высокого уровня; возможность управления диалогом с помощью «меню» и директив, желательность общения на родном языке и т. п.

Примеры ПМК обеспечения диалоговых режимов: система диалогового управления вводом заданий, система режима разделения времени и др.

Функционирование САПР возможно только при наличии и взаимодействии перечисленных ниже средств:

- программного обеспечения;

- информационного обеспечения;

- методического обеспечения;

- лингвистического обеспечения;

- технического обеспечения;

- организационного обеспечения.

Теперь кратко разберёмся с назначением каждого компонента средств САПР

Программное обеспечение САПР представляет собой совокупность всех программ и эксплуатационной документации к ним, необходимых для выполнения автоматизированного проектирования. Программное обеспечение делиться на общесистемное и специальное (прикладное) ПО. Общесистемное ПО предназначено для организации функционирования технических средств, т. е. для планирования и управления вычислительным процессом, распределения имеющихся ресурсов, о представлено различными операционными системами. В специальном ПО реализуется математическое обеспечение для непосредственного выполнения проектных процедур.

Информационное обеспечение САПР . Основу составляют данные, которыми пользуются проектировщики в процессе проектирования непосредственно для выработки проектных решений. Эти данные могут быть представлены в виде тех или иных документов на различных носителях, содержащих сведения справочного характера о материалах, параметрах элементов, сведения о состоянии текущих разработок в виде промежуточных и окончательных проектных решений.

Методическое обеспечение САПР . Под методическим обеспечением САПР понимают входящие в её состав документы, регламентирующие порядок ее эксплуатации. Причем документы, относящиеся к процессу создания САПР, не входят в состав методического обеспечения. Так в основном документы методического обеспечения носят инструктивный характер, и их разработка является процессом творческим.

Математическое обеспечение САПР . Основа - это алгоритмы, по которым разрабатывается программное обеспечение САПР. Среди разнообразных элементов математического обеспечения имеются инвариантные элементы-принципы построения функциональных моделей, методы численного решения алгебраических и дифференциальных уравнений, постановки экстремальных задач, поиски экстремума. Разработка математического обеспечения является самым сложным этапом создания САПР, от которого в наибольшей степени зависят производительность и эффективность функционирования САПР в целом.

Лингвистическое обеспечение САПР . Основу составляют специальные языковые средства (языки проектирования), предназначенные для описания процедур автоматизированного проектирования и проектных решений. Основная часть лингвистического обеспечения - языки общения человека с ЭВМ.

Техническое обеспечение САПР . Это создание и использование ЭВМ, графопостроителей, оргтехники и всевозможных технических устройств, облегчающих процесс автоматизированного проектирования.

Организационное обеспечение САПР. Этот пункт предписывает комплектование подразделений САПР проффесионально грамотными специалистами, имеющими навыки и знания для работы с перечисленными выше компонентами САПР. От их работы будет зависеть эффективность и качество работы всего комплекса САПР (может даже всего производства).

1.2 Назначения и области применения САПР

В российском производстве в понятие системы автоматизированного проектирования (САПР) принято включать CAD, CAE и CAM, хотя зарубежные проектировщики ассоциируют САПР только с CAD.

В зависимости от объекта проектирования САПР принято де-

лить, по крайней мере, на два основных вида:

CAD (Computer-Aided Design). Здесь Computer - компьютер, Aided - с помощью, Design - проект, проектировать. Таким образом, термин CAD можно перевести как «проектирование с помощью компьютера». Эти системы выполняют объемное и плоское геометрическое моделирование, инженерные расчеты и анализ, оценку проектных решений, изготовление чертежей. В более строгой формулировке CAD - программный пакет, предназначенный для проектирования (разработки) объектов производства (или строительства), а также оформления конструкторской и/или технологической документации. Современные САПР используются совместно с системами автоматизации инженерных расчетов и анализа CAE, либо внутри себя содержат интегрированные средства автоматизации инженерных расчетов и анализа. Данные из CAD-системы передаются в CAM-систему автоматизированной разработки управляющих программ для оборудования с ЧПУ или ГАПС (Гибких автоматизированных производственных систем). Работа с САПР обычно подразумевает создание геометрической модели изделия (двумерной или трехмерной, твердотельной), генерацию на основе этой модели конструкторской документации (чертежей изделия, спецификаций и проч.) и последующее его сопровождение.

Следует отметить, что русский термин «САПР» по отношению к промышленным системам имеет более широкое толкование, чем CAD - он включает в себя CAD, CAM и CAE.

САПР технологии изготовления. В странах бывшего Советского Союза эти системы принято называть САПР ТП или АС ТПП. В зарубежной литературе их называют CAPP (Computer Automated Process Planning). Здесь Automated - автоматический, Process - процесс, Planning - планировать, планирование, составление плана. С помощью этих систем разрабатывают технологические процессы и оформляют их в виде маршрутных, операционных, маршрутнооперационных карт, проектируют технологическую оснастку, разрабатывают управляющие программы (УП) для станков с ЧПУ.

Более конкретное описание технологии обработки на оборудовании с ЧПУ (в виде кадров управляющей программы) генерируется автоматизированной системой управления производственным оборудованием (АСУПР), которую в зарубежной литературе принято называть CAM (Computer - Aided Manufacturing ) . Здесь Manufactur- ing - производство, изготовление. Техническими средствами, реализующими данную систему, могут быть системы ЧПУ станков, компьютеры, управляющие автоматизированными станочными системами. В некоторых источниках под термином САМ понимают подготовку технологического процесса производства изделий, ориентированную на использование средств вычислительной техники, и включающую не только сам процесс компьютеризированной подготовки производства, но и программно-вычислительные комплексы, используемые технологами проектировщиками. Фактически же технологическая подготовка сводится к автоматизации разработки управляющих программ для оборудования с ЧПУ (2- осевые лазерные станки), (3- и 5-осевые фрезерные станки с ЧПУ; токарные станки; обрабатывающие центры; автоматы продольного точения и токарно-фрезерной обработки). Как правило, большинство программно-вычислительных комплексов совмещают в себе решение задач CAD/CAM, CAE/САМ, CAD/CAE/CAM.

Научно-исследовательский этап проектирования иногда выделяют в самостоятельную автоматизированную систему научных исследований (АСНИ) или, используя зарубежную терминологию, автоматизированную систему инжиниринга - CAE (Computer Aided Engineering). Одним из примеров такой системы является так называемая «изобретающая машина», которая поддерживает процесс принятия проектировщиком новых нестандартных решений, иногда и на уровне изобретений. В более узком понимании САЕ - общее название для программ или программных пакетов, предназначенных для инженерных расчетов, анализа и симуляции физических процессов. Расчетная часть пакетов чаще всего основана на численных методах решения дифференциальных уравнений (метод конечных элементов, метод конечных объемов, метод конечных разностей и др.). Современные системы автоматизации инженерных расчетов (CAE) применяются совместно с CAD-системами (зачастую интегрируются в них, в этом случае получаются гибридные CAD/CAE-системы). CAE-системы это разнообразные программные продукты, позволяющие оценить, как поведёт себя компьютерная модель изделия в реальных условиях эксплуатации. Они позволяют проверить работоспособность изделия, без привлечения больших затрат времени и средств.

Помимо этого различают: систему производственного планирования и управления PPS (Productions plans system), что соответствует отечественному термину АСУП (автоматизированная система управления производством). CAQ (Computer Aided Quality Control) - автоматизированная система управления качеством. PDM (Product Data Management) - автоматизированная система управления производственной информацией. Аналог системы электронного документооборота. CAD/САМ/САЕ/PDM - комплексная система автоматизированного проектирования и производства. CIM (Computer Integrated Manufacturing) - система интегрированного производства.

2 . Применение систем автоматизированного проектирования в машиностроительном производстве

Непосредственно в машиностроении применяются специализированные пакеты и различные надстройки более общих и распространенных систем проектирования, таких как Autodesk AutoCAD, ZwCAD, BricsCAD, Космос, SolidWorks и другие. Рассмотрим подробнее некоторые из систем.

Традиционно, продукты САПР для машиностроения разделены на три класса: тяжелый, средний и легкий. Такая классификация сложилась исторически, и хотя уже давно идут разговоры о том, что грани между классами вот-вот сотрутся, они остаются, так как системы по-прежнему различаются и по цене, и по функциональным возможностям.

В результате сейчас в этой области имеется несколько мощных систем, своего рода “олигархов” мира САПР, стабильно развивающиеся продукты среднего класса и получившие массовое распространение недорогие “легкие” программы. Имеется и так называемая “внеклассовая прослойка общества”, роль которой выполняют различные специализированные решения.

2.1 Тяжелые САПР

Компьютерная технология призвана не автоматизировать трад и ционно существующие технологические звенья (так как это обычно не дает какого-либо эффекта, за исключением некоторого изменения условий труда), а принципиально и з менить саму технологию проектирования и производства изделий . Только в этом случае можно ожидать существенного сокращения сроков создания изделий, снижения затрат на весь жизненный цикл изделия, повышения качества изделий.

Прежде всего, применительно к созданию сложных изделий машиностроения, в основе организации компьютерной технологии лежит создание полного электронного макета изделия, так как именно создание трехмерных электронных моделей, адекватных реально проектируемому изделию, открывает колоссальные возможности для создания более качественной продукции (особенно сложной, наукоемкой продукции) и в более сжатые сроки.

В идеале в процессе проектирования и производства сложных и многокомпонентных изделий все участвующие в проектировании должны, работая одновременно и наблюдая работу друг друга, создавать сразу на компьютерах электронные модели деталей, узлов, агрегатов, систем и всего изделия в целом.

При этом одновременно решать задачи концептуального необходимо проектирования, всевозможных видов инженерного анализа, моделирования ситуаций, а также компоновки изделия и формирования внешних обводов. Не дожидаясь полного окончания разработки нового изделия, эту информацию следует использовать для технологической подготовки производства и производства как такового. Кроме того, необходимо автоматизировано управлять и всеми создаваемыми данными электронной модели (то есть структурой изделия), и самим процессом создания изделия, и к тому же иметь возможность управлять структурой процесса создания изделия.

Для реализации именно компьютерной технологии проектирования и производства должны применяться системы автоматизированного проектирования инженерного анализа и технологической подготовки производства (CAD/CAE/CAM) высшего уровня, а также системы управления проектом (PDM -- Product Data Management).

Что такое система CAD/CAE/CAM высшего уровня? Это такая система, которая, во-первых, обеспечивает весь цикл создания изделия от концептуальной идеи до реализации, а во-вторых (и это самое главное), создает проектно-технологическую среду для одновременной работы всех участников создания изделия с единой виртуальной электронной моделью этого изделия.

На Западе эта организационная философия обозначается аббревиатурой CAPE (Concurrent Art-to-Product Environment), что можно перевести как «Единая среда создания изделия от идеи до реализации». По существу, именно то, в какой степени система реализует указанную философию, и определяет уровень системы. Руководствуясь такой концепцией, можно резко сократить цикл создания изделия, повысить технический уровень проектов, избежать нестыковок и ошибок в изготовлении оснастки и самого изделия благодаря тому, что в подобном случае все данные взаимосвязаны и контролируемы.

В настоящее время на рынке осталось лишь три САПР верхнего ценового класса -- Unigraphics NX компании EDS, CATIA французской фирмы Dassault Systemes (которая продвигает ее вместе с IBM) и Pro/Engineer от РТС (Parametric Technology Corp.). Раньше мощных системы было больше, но после череды слияний и поглощений компаний, число пакетов сократилось.

Упомянутые компании -- лидеры в области САПР, а их продукты занимают львиную долю рынка в денежном выражении. Главная особенность «тяжелых» САПР -- обширные функциональные возможности, высокая производительность и стабильность работы -- все это результат длительного развития. Однако, эти системы немолоды -- CATIA появилась в 1981 г., Pro/Engineer -- в 1988 г., а Unigraphics NX, хотя и вышла в 2002 г., является результатом слияния двух весьма почтенных по возрасту систем -- Unigraphics и I-Deas, полученных фирмой EDS в результате приобретения компаний Unigraphics и SDRC. Все названные программы включают средства трехмерного твердотельного и поверхностного моделирования, а также модули структурного анализа и подготовки к производству, т. е. являются интегрированными пакетами CAD/CAM/CAE. Кроме того, все три поставщика предлагают для своих САПР системы управления инженерными данными (PDM), позволяющие управлять всей конструкторско-технологической документацией и предоставлять дополнительные данные, экспортированные из других корпоративных систем, из справочников и нормативных источников.

Несмотря на то, что тяжелые системы стоят значительно дороже своих более «легких» собратьев (десятки тысяч долларов за одно рабочее место), затраты на их приобретение окупаются, особенно когда речь идет о сложном производстве, например машиностроении, двигателестроении, авиационной и аэрокосмической промышленности. Однако крупных клиентов, способных платить за САПР миллионы долларов не так много. По мнению аналитиков, этот сегмент рынка уже практически насыщен и поделен между «китами» индустрии. Сейчас производители средств автоматизации проектирования возлагают надежды на предприятия среднего и малого бизнеса, которых гораздо больше, чем промышленных гигантов. Для них предназначены системы среднего и легкого классов.

2.2 Средний класс САПР

В мире САПР средний класс возник позднее двух остальных -- в начале 90-х. До этого средствами трехмерного твердотельного моделирования обладали лишь дорогие тяжелые системы, а легкие программы служили для двумерного черчения. Средние САПР заняли промежуточное положение между тяжелым и легким классами, унаследовав от первых трехмерные параметрические возможности, а от вторых -- невысокую цену и ориентацию на платформу Windows. Они произвели революционный переворот в мире САПР, открыв небольшим конструкторским организациям путь для перехода от двумерного к трехмерному проектированию.

Важную роль в становлении среднего класса сыграли два ядра твердотельного параметрического моделирования ACIS и Parasolid, которые появились в начале 90-х годов и сейчас используются во многих ведущих САПР. Геометрическое ядро служит для точного математического представления трехмерной формы изделия и управления этой моделью. Полученные с его помощью геометрические данные используются системами CAD, CAM и САЕ для разработки конструктивных элементов, сборок и изделий. В настоящее время Parasolid принадлежит фирме EDS, а ACIS -- компании Dassault, которые продают лицензии на их использование всем желающим. Таких желающих немало -- эти ядра составляют основу более сотни САПР, а число проданных лицензий перевалило за миллион. Успех понятен -- ведь использование готового ядра избавляет разработчиков системы от решения трудоемких задач твердотельного моделирования и позволяет сосредоточиться на пользовательском интерфейсе и других функциях. Впрочем, это не значит, что все САПР среднего класса построены на базе этих механизмов. Многие компании ценят независимость и предпочитают разрабатывать собственные «движки».

К среднему классу аналитики относят системы стоимостью порядка 5--6 тыс. долл. за рабочее место (цены в США). Для сравнения: у тяжелых САПР рабочее место обходится примерно в 20 тыс. долл., но в последнее время поставщики выпустили облегченные версии продуктов, которые стоят дешевле.

По прогнозу аналитической компании Daratech рост среднего класса будет продолжаться, и предполагается, что до 2008-го рынок будет увеличиваться на 11% в год. Причина такой положительной динамики состоит в активном притоке новых пользователей из обоих смежных лагерей -- тяжелых и легких систем. Так, по мнению аналитиков, сейчас становится все больше производителей, недовольных слабой окупаемостью своих инвестиций в дорогие продукты и ищущих более дешевые варианты. С другой стороны, глобализация, нарастание конкуренции и спад мировой экономики заставляют малые и средние предприятия переходить c двумерных САПР на трехмерные, чтобы ускорить выпуск новых изделий в продажу и повысить их качество. Процесс перехода подстегивает улучшение совместимости между 2D- и 3D-системами и увеличение преимуществ САПР среднего класса для повышения производительности труда.

У средних САПР сейчас существует обширный круг потенциальных потребителей, и они вольно или под давлением рынка будут вынуждены рано или поздно их внедрить. На руку “середнякам” играет и расширение функциональных возможностей этих продуктов. В результате у предприятий, которые хотят получить надежный инструмент для трехмерного моделирования, но могут обойтись без высокоразвитых средств тяжелых САПР, появились дополнительные варианты для выбора ПО. Ведь раньше поставщики утверждали, что средние САПР обладают 80% функций тяжелых продуктов, а их цена составляет всего 20% от стоимости дорогих систем. Теперь, считают аналитики из Daratech, по возможностям “середняки” приближаются к 90%, а по стоимости -- к 50%. Безусловно, даже этот 10%-ный разрыв нельзя сбрасывать со счетов. Например, предприятиям автомобильной и авиакосмической промышленности крайне необходим передовой функционал, присущий только “тяжеловесам”. Поэтому различие между этими двумя классами существует и сохранится в течение обозримого будущего, так как разработчики и тех и других систем не сидят сложа руки, а будут и впредь совершенствовать свои продукты.

Пионером в области средних САПР стала компания SolidWorks. В 1993 г. она представила одноименный продукт, обладающий трехмерным геометрическим ядром, который, по утверждению создателей, по возможностям приближался к механизмам твердотельного моделирования тяжелых систем, но стоил гораздо дешевле. Вскоре примеру первопроходца последовала фирма Solid Edge, выпустившая одноименную САПР, а затем и Autodesk. Она сначала разработала трехмерную программу Mechanical Desktop на базе двумерной AutoCAD, а затем создала новое ПО Inventor. Помимо этих систем на рынке есть немало других САПР среднего класса, например think3, Cadkey, Alibre. Есть среди них и российские разработки. Так, компания АСКОН продвигает систему КОМПАС на базе собственного геометрического ядра, а фирма “Топ Системы” -- программу T-Flex на основе ядра Parasolid, принадлежащего UGS. Они также прошли длительный путь развития и обзавелись встроенными средствами поверхностного моделирования, управления документами (PDM), технологической подготовки производства (CAM) и т. д., но при этом стоят существенно дешевле зарубежных аналогов и изначально ориентированы на отечественные стандарты и приемы проектирования.

2.3 Легкие системы САПР

Программы данной категории служат для двумерного черчения, поэтому их обычно называют электронной чертежной доской. К настоящему времени они пополнились некоторыми трехмерными возможностями, но не имеют средств параметрического моделирования, которыми обладают тяжелые и средние САПР.

Первая чертежная система Sketchpad была создана еще в начале 60-х годов, а затем появилось немало других продуктов такого рода, использующих достижения компьютерной графики. Однако подлинный расцвет в этой области наступил лишь в 80-е годы с появлением персональных компьютеров. Вслед за снижением стоимости оборудования последовал обвал цен и на САПР.

Пионером в этой области стала компания Autodesk, которая в 1983 году, выпустила САПР для ПК под названием AutoCAD. Успех был феноменальным -- уже в 1987 г. было продано 100 тыс. копий AutoCAD, а сегодня это число превышает четыре миллиона. В результате Autodesk удалось отхватить изрядную долю рынка САПР, вытеснив тяжеловесов из сегмента программ для двумерного черчения. Примеру первопроходца последовали и остальные игроки. Так, в 1984 г. фирма Bently представила программу Microstation, которая стала основным конкурентом AutoCAD"а. Кроме них сейчас существует множество других «легких» САПР, включая DataCAD одноименной компании, TurboCAD фирмы IMSI, SurfCAM от Surfware и другие. Эти продукты проще и дешевле (100 -- 4000 долл.) тяжелых и средних САПР, поэтому пользуются спросом, несмотря на нынешний экономический спад. В результате «легкие» системы стали самым распространенным продуктом автоматизации проектирования, своего рода «рабочей лошадкой» мира САПР.

3 . Функциональные возможности программного продукта « nanoCAD »

3.1 Основные особенности продукта «nanoCAD»

nanoCAD -- базовая система автоматизированного проектирования и черчения (САПР-платформа). Разработана компанией «Нанософт», Россия. В России и странах СНГ распространяется по схеме "freeware". Обладает AutoCAD-подобным интерфейсом и напрямую поддерживает формат DWG (с помощью библиотек Teigha™, разработчик Open Design Alliance). На базе бесплатной платформы nanoCAD создается ряд платных приложений для выполнения различных узкоспециализированных проектных задач.

К достоинствам продукта nanoCAD можно отнести:

· Нулевая цена : программное обеспечение распространяется бесплатно и доступно для коммерческого использования, как частными лицами, так и проектными организациями.

· Привычный интерфейс : принципы работы с nanoCAD аналогичны принципам работы в AutoCAD, что позволяет пользователю сменить платформу без серьёзного переобучения.

· Прямая поддержка DWG : чертежи, разработанные в nanoCAD можно открыть в среде AutoCAD без дополнительных преобразований и наоборот, чертежи, разработанные в среде AutoCAD, открываются в среде nanoCAD .

· Открытый API : под nanoCAD можно разрабатывать собственные приложения на языках C++ или.NET.

К недостаткам nanoCAD можно отнести:

· Отсутствие поддержки AutoLISP и VBA : любые приложения и средства адаптации, написанные на языках AutoLISP и VBA, на данный момент не работают в среде nanoCAD.

· Потенциальные проблемы с поддержкой DWG : т.к. nanoCAD поддерживает формат DWG с помощью библиотек Teigha™, разработанных некоммерческой организацией Open Design Alliance, то существует потенциальная возможность потерять совместимость с оригинальным форматом DWG от компании Autodesk. В сложившихся условиях это маловероятно: библиотеками ODA пользуются порядка 750 организаций (ODA Members, среди которых - Adobe, Oracle, Bentley, Dassault Systиmes, Siemens, Graphisoft, российские компании - Аскон, Нанософт, СиСофт, Инфрасофт и др.). На данный момент основная масса чертежей в формате DWG обрабатывается достаточно достоверно, включая визуализацию, редактирование и сохранение.

Продукт «nanoCAD » функционально занимает нишу между AutoCAD LT и полной версией AutoCAD . Разработчики nanoCAD считают, что ни одна платформа, являясь по своей сути электронным кульманом, не может называться САПР. Поэтому, распространяя платформу nanoCAD бесплатно, «Нанософт» предлагает пользователям использовать платные приложения, работающие как на платформе AutoCAD, так и на платформе nanoCAD .

3.2 Функциональные возможности

Интерфейс nanoCAD последних версий максимально приближен к интерфейсу классических САПР: основную часть окна занимает рабочее пространство, в котором непосредственно разрабатывается чертеж, в верхней части расположены меню и панели с навигационными инструментами, в нижней части расположена командная строка. Команды и меню соответствует организации интерфейса AutoCAD версий 2000-2008.

Несмотря на визуальное сходство с AutoCAD (а также программами на базе ядра IntelliCAD, являющихся копиями AutoCAD), ядро nanoCAD разрабатывается российскими разработчиками самостоятельно. Это приводит к некоторым различиям в работе nanoCAD от работы в среде AutoCAD: так в nanoCAD отсутствуют многие функции и технологии, заложенные в AutoCAD (технология подшивок, работа с динамическими блоками динамический ввод информации и т.д.).

На данный момент nanoCAD позиционируется как система рабочего 2D-проектирования (черчения) и содержит все необходимые инструменты базового проектирования и позволяет:

· Создавать и редактировать различные 2D и 3D векторные примитивы, одно и многострочные тексты, размеры и другие, более сложные объекты оформления чертежей, в соответствии со стандартами ЕСКД и СПДС.

· Выполнять простые и сложные операции векторного редактирования, такие как перемещение, поворот, разбиение, продление и т.д.;

· Использовать инструменты повышающие точность редактирования: шаг, сетку, привязки, объектное и полярное отслеживание;

· Создавать и использовать любые виды таблиц, выполнять специфицирование элементов чертежа по атрибутивным данным блоков и объектов оформления;

· Производить настройки рабочей среды для оформления рабочей документации по различным стандартам;

· Выполнять печать готовых технических документов по заранее сформированным настройкам;

· Вести полноценную работу в 3D-пространстве модели и 2D-пространстве листа, используя видовые экраны;

· Просматривать, создавать и редактировать поверхностные 3D-модели, задавать пользовательскую координатную систему для редактирования и геометрической привязки к 3D-объектам;

· Использовать при проектировании любую ранее выполненную техническую документацию, хранящуюся в электронном виде в различных растровых форматах (сканированные чертежи, фотографии) или как OLE объекты (тексты, таблицы);

· Обмениваться готовыми чертежами со сторонними организациями и смежниками, используя распространённый формат DWG.

4 . Функциональные возможности программного продукта « Pro \ ENGINEER »

система автоматизированное проектирование

4.1 Основные особенности продукта « Pro \ ENGINEER »

Pro/ E NGINEER - это, прежде всего, система трехмерного проектирования, как твердотельного, так и поверхностного, предоставляющая очевидные преимущества перед традиционным в прошлом двумерным проектированием:

наглядность представления проектируемой модели - позволяет избежать ошибок, связанных с тем, что при двумерном проектировании конструктору трудно представить твердотельную модель, особенно имеющую сложную геометрию;

оперирование геометрией на уровне объектов - инженерных элементов, что значительно упрощает и ускоряет процесс проектирования. Ядро Pro/ E NGINEER использует уникальную по своим возможностям технологию - Proven Technology, основанную на граничных представлениях. Основное отличие Proven Technology от известных технологий трехмерного проектирования ACIS, Parasolid, используемых в конкурирующих продуктах (UNIGRAPHICS, I-DEAS, CADDS, EUCLID) - жесткие требования на проектируемую геометрию (геометрия должна быть определена однозначно). Такие ограничения не требуют от конструкторов лишних усилий при проектировании, а позволяют достичь полного соответствия геометрии полученной детали заданным размерам, что наиболее критично при дальнейшей работе над моделью (изготовление технологической оснастки, подготовка программ для обработки на станках с ЧПУ и т.д.).

Этап проектирования изделия включает трехмерное моделирование, оптимизацию конструкции, подготовку рабочих чертежей и определение процессов изготовления (проектирование программ для станков с ЧПУ). Эффективное сочетание всех этих функций значительно уменьшает время выхода изделий на рынок. Основное преимущество Pro/ E NGINEER перед традиционными методами проектирования - поддержка параллельной разработки изделия. Этим обеспечивается более быстрый, чем у конкурентов, выпуск изделия на рынок, по более низкой цене и более высокого качества.

4.2 Функциональные возможности

Программные модули Pro/ E NGINEER для решения задач конструкторского проектирования предназначены для инженеров-конструкторов и предоставляют им инструмент для создания моделей, как отдельных деталей, так и сложных сборочных конструкций. Это строгая, логичная, простая в обращении система, позволяющая действовать интуитивно и творчески. Она позволяет проектировать и управлять крупными, сложными сборочными единицами, состоящими практически из неограниченного числа компонентов. Контроль над пересечением отдельных деталей и расчет массовых характеристик гарантирует правильность сборки с первого раза. Это значительно сокращает время, затрачиваемое на проектирование, и облегчает повторное использование стандартных, опробованных конструкций в качестве основы новых продуктов.

Использование в Pro/ E NGINEER единой информационной модели изделия дает возможность инженерам-технологам начинать разработку оснастки и управляющих программ для оборудования с ЧПУ, не дожидаясь окончательного завершения этапа конструкторского проектирования. Конструкторы еще не закончили работу со сборкой, а технологи уже работают над разработкой техпроцессов изготовления составляющих ее деталей, при необходимости поправляя возможные ошибки конструкторов. Это значительно сокращает время и средства, затрачиваемые на проектные и работы, и позволяет оптимально использовать коллективный опыт разработчиков.

Пакет программных модулей для технологической подготовки производства предназначен для инженеров-технологов и позволяет решать задачи проектирования технологической оснастки (штампов, пресс-форм), разработки управляющих программ для металлорежущего, штампового оборудования с ЧПУ, а также оборудования проволочной электроэрозионной обработки.

Заключение

nanoCAD предназначена для оформления чертежей в соответствии с требованиями Единой системы конструкторской документации (ЕСКД). В программе удобно проектировать системы гидропневмоэлементов, зубчатые зацепления, валы, а также проводить инженерный анализ, выполнять расчет размерных цепей и многие другие операции, необходимые при машиностроительном проектировании.

Pro / ENGINEER - полнофункциональная САПР для разработки изделий любой сложности. Благодаря мощным возможностям автоматизации всех машиностроительных дисциплин, Pro/ENGINEER является общепризнанным 3D решением для моделирования и разработки конкурентоспособных коммерческих изделий. Интегрированные CAD/CAM/CAE решения Pro/ENGINEER позволяют проектировать быстрее, чем когда-либо, максимально способствуя появлению новых идей и повышению качества, что в конечном итоге приводит к созданию выдающихся изделий.

Список информационных ресурсов :

Подобные документы

    AutoCAD как одна из самых популярных графических систем автоматизированного проектирования, круг выполняемых ею задач и функций. Технология автоматизированного проектирования и методика создания чертежей в системе AutoCAD. Создание и работа с шаблонами.

    лекция , добавлен 21.07.2009

    Создание программных комплексов для систем автоматизированного проектирования с системами объемного моделирования и экспресс-тестами. SolidWorks - мировой стандарт автоматизированного проектирования. Пользовательский интерфейс, визуализация модели.

    курсовая работа , добавлен 13.10.2012

    курсовая работа , добавлен 22.11.2009

    Основные цели и принципы построения автоматизированного проектирования. Повышение эффективности труда инженеров. Структура специального программного обеспечения САПР в виде иерархии подсистем. Применение методов вариантного проектирования и оптимизации.

    презентация , добавлен 26.11.2014

    Технологии автоматизированного проектирования, автоматизированного производства, автоматизированной разработки и конструирования. Концептуальный проект предполагаемого продукта в форме эскиза или топологического чертежа как результат подпроцесса синтеза.

    реферат , добавлен 01.08.2009

    Предпосылки внедрения систем автоматизированного проектирования. Условная классификация САПР. Анализ программ, которые позволяют решать инженерные задачи. Система управления жизненным циклом продукта - Product Lifecycle Management, ее преимущества.

    контрольная работа , добавлен 26.09.2010

    Анализ тенденций развития информационных технологий. Назначение и цели применения систем автоматизированного проектирования на основе системного подхода. Методы обеспечения автоматизации выполнения проектных работ на примере ЗАО "ПКП "Теплый дом".

    курсовая работа , добавлен 11.09.2010

    Структура и классификация систем автоматизированного проектирования. Виды обеспечения САПР. Описание систем тяжелого, среднего и легкого классов. Состав и функциональное назначение программного обеспечения, основные принципы его проектирования в САПР.

    курсовая работа , добавлен 18.07.2012

    История развития рынка CAD/CAM/CAE-систем. Развитие приложений для проектирования шаблонов печатных плат и слоев микросхем. Проект разработки компанией Shorts Brothers фюзеляжа для самолета бизнес-класса Learjet 45, преимущества от применения программ.

    контрольная работа , добавлен 14.04.2014

    Разработка трехмерной модели судна на уровне эскизного проекта в системе автоматизированного проектирования CATIA v5 R19. Технология и этапы автоматизированного проектирования. Параметризация и декомпозиция судна как сборки. Принципы работы в CATIA.

Похожие статьи