Типы многослойных нейронных сетей. Классификация искусственных нейронных сетей

08.07.2019

В главе мы ознакомились с такими понятиями, как искусственный интеллект, машинное обучение и искусственные нейронные сети.

В этой главе я детально опишу модель искусственного нейрона, расскажу о подходах к обучению сети, а также опишу некоторые известные виды искусственных нейронных сетей, которые мы будем изучать в следующих главах.

Упрощение

В прошлой главе я постоянно говорил о каких-то серьезных упрощениях. Причина упрощений заключается в том, что никакие современные компьютеры не могут быстро моделировать такие сложные системы, как наш мозг. К тому же, как я уже говорил, наш мозг переполнен различными биологическими механизмами, не относящиеся к обработке информации.

Нам нужна модель преобразования входного сигнала в нужный нам выходной. Все остальное нас не волнует. Начинаем упрощать.

Биологическая структура → схема

В предыдущей главе вы поняли, насколько сложно устроены биологические нейронные сети и биологические нейроны. Вместо изображения нейронов в виде чудовищ с щупальцами давайте просто будем рисовать схемы.

Вообще говоря, есть несколько способов графического изображения нейронных сетей и нейронов. Здесь мы будем изображать искусственные нейроны в виде кружков.

Вместо сложного переплетения входов и выходов будем использовать стрелки, обозначающие направление движения сигнала.

Таким образом искусственная нейронная сеть может быть представлена в виде совокупности кружков (искусственных нейронов), связанных стрелками.

Электрические сигналы → числа

В реальной биологической нейронной сети от входов сети к выходам передается электрический сигнал. В процессе прохода по нейронной сети он может изменяться.

Электрический сигнал всегда будет электрическим сигналом. Концептуально ничего не изменяется. Но что же тогда меняется? Меняется величина этого электрического сигнала (сильнее/слабее). А любую величину всегда можно выразить числом (больше/меньше).

В нашей модели искусственной нейронной сети нам совершенно не нужно реализовывать поведение электрического сигнала, так как от его реализации все равно ничего зависеть не будет.

На входы сети мы будем подавать какие-то числа, символизирующие величины электрического сигнала, если бы он был. Эти числа будут продвигаться по сети и каким-то образом меняться. На выходе сети мы получим какое-то результирующее число, являющееся откликом сети.

Для удобства все равно будем называть наши числа, циркулирующие в сети, сигналами.

Синапсы → веса связей

Вспомним картинку из первой главы, на которой цветом были изображены связи между нейронами – синапсы. Синапсы могут усиливать или ослаблять проходящий по ним электрический сигнал.

Давайте характеризовать каждую такую связь определенным числом, называемым весом данной связи. Сигнал, прошедший через данную связь, умножается на вес соответствующей связи.

Это ключевой момент в концепции искусственных нейронных сетей, я объясню его подробнее. Посмотрите на картинку ниже. Теперь каждой черной стрелке (связи) на этой картинке соответствует некоторое число ​\(w_i \) ​ (вес связи). И когда сигнал проходит по этой связи, его величина умножается на вес этой связи.

На приведенном выше рисунке вес стоит не у каждой связи лишь потому, что там нет места для обозначений. В реальности у каждой ​\(i \) ​-ой связи свой собственный ​\(w_i \) ​-ый вес.

Искусственный нейрон

Теперь мы переходим к рассмотрению внутренней структуры искусственного нейрона и того, как он преобразует поступающий на его входы сигнал.

На рисунке ниже представлена полная модель искусственного нейрона.

Не пугайтесь, ничего сложного здесь нет. Давайте рассмотрим все подробно слева направо.

Входы, веса и сумматор

У каждого нейрона, в том числе и у искусственного, должны быть какие-то входы, через которые он принимает сигнал. Мы уже вводили понятие весов, на которые умножаются сигналы, проходящие по связи. На картинке выше веса изображены кружками.

Поступившие на входы сигналы умножаются на свои веса. Сигнал первого входа ​\(x_1 \) ​ умножается на соответствующий этому входу вес ​\(w_1 \) ​. В итоге получаем ​\(x_1w_1 \) ​. И так до ​\(n \) ​-ого входа. В итоге на последнем входе получаем ​\(x_nw_n \) ​.

Теперь все произведения передаются в сумматор. Уже исходя из его названия можно понять, что он делает. Он просто суммирует все входные сигналы, умноженные на соответствующие веса:

\[ x_1w_1+x_2w_2+\cdots+x_nw_n = \sum\limits^n_{i=1}x_iw_i \]

Математическая справка

Сигма – Википедия

Когда необходимо коротко записать большое выражение, состоящее из суммы повторяющихся/однотипных членов, то используют знак сигмы.

Рассмотрим простейший вариант записи:

\[ \sum\limits^5_{i=1}i=1+2+3+4+5 \]

Таким образом снизу сигмы мы присваиваем переменной-счетчику ​\(i \) ​ стартовое значение, которое будет увеличиваться, пока не дойдет до верхней границы (в примере выше это 5).

Верхняя граница может быть и переменной. Приведу пример такого случая.

Пусть у нас есть ​\(n \) магазинов. У каждого магазина есть свой номер: от 1 до ​\(n \) ​. Каждый магазин приносит прибыль. Возьмем какой-то (неважно, какой) ​\(i \) ​-ый магазин. Прибыль от него равна ​\(p_i \) ​.

\[ P = p_1+p_2+\cdots+p_i+\cdots+p_n \]

Как видно, все члены этой суммы однотипны. Тогда их можно коротко записать следующим образом:

\[ P=\sum\limits^n_{i=1}p_i \]

Словами: «Просуммируй прибыли всех магазинов, начиная с первого и заканчивая ​\(n \) ​-ым». В виде формулы это гораздо проще, удобнее и красивее.

Результатом работы сумматора является число, называемое взвешенной суммой.

Взвешенная сумма (Weighted sum ) (​\(net \) ​) - сумма входных сигналов, умноженных на соответствующие им веса.

\[ net=\sum\limits^n_{i=1}x_iw_i \]

Роль сумматора очевидна – он агрегирует все входные сигналы (которых может быть много) в какое-то одно число – взвешенную сумму, которая характеризует поступивший на нейрон сигнал в целом. Еще взвешенную сумму можно представить как степень общего возбуждения нейрона.

Пример

Для понимания роли последнего компонента искусственного нейрона – функции активации – я приведу аналогию.

Давайте рассмотрим один искусственный нейрон. Его задача – решить, ехать ли отдыхать на море. Для этого на его входы мы подаем различные данные. Пусть у нашего нейрона будет 4 входа:

  1. Стоимость поездки
  2. Какая на море погода
  3. Текущая обстановка с работой
  4. Будет ли на пляже закусочная

Все эти параметры будем характеризовать 0 или 1. Соответственно, если погода на море хорошая, то на этот вход подаем 1. И так со всеми остальными параметрами.

Если у нейрона есть четыре входа, то должно быть и четыре весовых коэффициента. В нашем примере весовые коэффициенты можно представить как показатели важности каждого входа, влияющие на общее решение нейрона. Веса входов распределим следующим образом:

Нетрудно заметить, что очень большую роль играют факторы стоимости и погоды на море (первые два входа). Они же и будут играть решающую роль при принятии нейроном решения.

Пусть на входы нашего нейрона мы подаем следующие сигналы:

Умножаем веса входов на сигналы соответствующих входов:

Взвешенная сумма для такого набора входных сигналов равна 6:

\[ net=\sum\limits^4_{i=1}x_iw_i = 5 + 0 + 0 + 1 =6 \]

Вот на сцену выходит функция активации.

Функция активации

Просто так подавать взвешенную сумму на выход достаточно бессмысленно. Нейрон должен как-то обработать ее и сформировать адекватный выходной сигнал. Именно для этих целей и используют функцию активации.

Она преобразует взвешенную сумму в какое-то число, которое и является выходом нейрона (выход нейрона обозначим переменной ​\(out \) ​).

Для разных типов искусственных нейронов используют самые разные функции активации. В общем случае их обозначают символом ​\(\phi(net) \) ​. Указание взвешенного сигнала в скобках означает, что функция активации принимает взвешенную сумму как параметр.

Функция активации (Activation function )(​\(\phi(net) \) ​) - функция, принимающая взвешенную сумму как аргумент. Значение этой функции и является выходом нейрона (​\(out \) ​).

Функция единичного скачка

Самый простой вид функции активации. Выход нейрона может быть равен только 0 или 1. Если взвешенная сумма больше определенного порога ​\(b \) ​, то выход нейрона равен 1. Если ниже, то 0.

Как ее можно использовать? Предположим, что мы поедем на море только тогда, когда взвешенная сумма больше или равна 5. Значит наш порог равен 5:

В нашем примере взвешенная сумма равнялась 6, а значит выходной сигнал нашего нейрона равен 1. Итак, мы едем на море.

Однако если бы погода на море была бы плохой, а также поездка была бы очень дорогой, но имелась бы закусочная и обстановка с работой нормальная (входы: 0011), то взвешенная сумма равнялась бы 2, а значит выход нейрона равнялся бы 0. Итак, мы никуда не едем.

В общем, нейрон смотрит на взвешенную сумму и если она получается больше его порога, то нейрон выдает выходной сигнал, равный 1.

Графически эту функцию активации можно изобразить следующим образом.

На горизонтальной оси расположены величины взвешенной суммы. На вертикальной оси - значения выходного сигнала. Как легко видеть, возможны только два значения выходного сигнала: 0 или 1. Причем 0 будет выдаваться всегда от минус бесконечности и вплоть до некоторого значения взвешенной суммы, называемого порогом. Если взвешенная сумма равна порогу или больше него, то функция выдает 1. Все предельно просто.

Теперь запишем эту функцию активации математически. Почти наверняка вы сталкивались с таким понятием, как составная функция. Это когда мы под одной функцией объединяем несколько правил, по которым рассчитывается ее значение. В виде составной функции функция единичного скачка будет выглядеть следующим образом:

\[ out(net) = \begin{cases} 0, net < b \\ 1, net \geq b \end{cases} \]

В этой записи нет ничего сложного. Выход нейрона (​\(out \) ​) зависит от взвешенной суммы (​\(net \) ​) следующим образом: если ​\(net \) ​ (взвешенная сумма) меньше какого-то порога (​\(b \) ​), то ​\(out \) ​ (выход нейрона) равен 0. А если ​\(net \) ​ больше или равен порогу ​\(b \) ​, то ​\(out \) ​ равен 1.

Сигмоидальная функция

На самом деле существует целое семейство сигмоидальных функций, некоторые из которых применяют в качестве функции активации в искусственных нейронах.

Все эти функции обладают некоторыми очень полезными свойствами, ради которых их и применяют в нейронных сетях. Эти свойства станут очевидными после того, как вы увидите графики этих функций.

Итак… самая часто используемая в нейронных сетях сигмоида - логистическая функция .

График этой функции выглядит достаточно просто. Если присмотреться, то можно увидеть некоторое подобие английской буквы ​\(S \) ​, откуда и пошло название семейства этих функций.

А вот так она записывается аналитически:

\[ out(net)=\frac{1}{1+\exp(-a \cdot net)} \]

Что за параметр ​\(a \) ​? Это какое-то число, которое характеризует степень крутизны функции. Ниже представлены логистические функции с разным параметром ​\(a \) ​.

Вспомним наш искусственный нейрон, определяющий, надо ли ехать на море. В случае с функцией единичного скачка все было очевидно. Мы либо едем на море (1), либо нет (0).

Здесь же случай более приближенный к реальности. Мы до конца полностью не уверены (в особенности, если вы параноик) – стоит ли ехать? Тогда использование логистической функции в качестве функции активации приведет к тому, что вы будете получать цифру между 0 и 1. Причем чем больше взвешенная сумма, тем ближе выход будет к 1 (но никогда не будет точно ей равен). И наоборот, чем меньше взвешенная сумма, тем ближе выход нейрона будет к 0.

Например, выход нашего нейрона равен 0.8. Это значит, что он считает, что поехать на море все-таки стоит. Если бы его выход был бы равен 0.2, то это означает, что он почти наверняка против поездки на море.

Какие же замечательные свойства имеет логистическая функция?

  • она является «сжимающей» функцией, то есть вне зависимости от аргумента (взвешенной суммы), выходной сигнал всегда будет в пределах от 0 до 1
  • она более гибкая, чем функция единичного скачка – ее результатом может быть не только 0 и 1, но и любое число между ними
  • во всех точках она имеет производную, и эта производная может быть выражена через эту же функцию

Именно из-за этих свойств логистическая функция чаще всего используются в качестве функции активации в искусственных нейронах.

Гиперболический тангенс

Однако есть и еще одна сигмоида – гиперболический тангенс. Он применяется в качестве функции активации биологами для более реалистичной модели нервной клетки.

Такая функция позволяет получить на выходе значения разных знаков (например, от -1 до 1), что может быть полезным для ряда сетей.

Функция записывается следующим образом:

\[ out(net) = \tanh\left(\frac{net}{a}\right) \]

В данной выше формуле параметр ​\(a \) ​ также определяет степень крутизны графика этой функции.

А вот так выглядит график этой функции.

Как видите, он похож на график логистической функции. Гиперболический тангенс обладает всеми полезными свойствами, которые имеет и логистическая функция.

Что мы узнали?

Теперь вы получили полное представление о внутренней структуре искусственного нейрона. Я еще раз приведу краткое описание его работы.

У нейрона есть входы. На них подаются сигналы в виде чисел. Каждый вход имеет свой вес (тоже число). Сигналы на входе умножаются на соответствующие веса. Получаем набор «взвешенных» входных сигналов.

Затем взвешенная сумма преобразуется функцией активации и мы получаем выход нейрона .

Сформулируем теперь самое короткое описание работы нейрона – его математическую модель:

Математическая модель искусственного нейрона с ​\(n \) ​ входами:

где
​\(\phi \) ​ – функция активации
\(\sum\limits^n_{i=1}x_iw_i \) ​ – взвешенная сумма, как сумма ​\(n \) ​ произведений входных сигналов на соответствующие веса.

Виды ИНС

Мы разобрались со структурой искусственного нейрона. Искусственные нейронные сети состоят из совокупности искусственных нейронов. Возникает логичный вопрос – а как располагать/соединять друг с другом эти самые искусственные нейроны?

Как правило, в большинстве нейронных сетей есть так называемый входной слой , который выполняет только одну задачу – распределение входных сигналов остальным нейронам. Нейроны этого слоя не производят никаких вычислений.

Однослойные нейронные сети

В однослойных нейронных сетях сигналы с входного слоя сразу подаются на выходной слой. Он производит необходимые вычисления, результаты которых сразу подаются на выходы.

Выглядит однослойная нейронная сеть следующим образом:

На этой картинке входной слой обозначен кружками (он не считается за слой нейронной сети), а справа расположен слой обычных нейронов.

Нейроны соединены друг с другом стрелками. Над стрелками расположены веса соответствующих связей (весовые коэффициенты).

Однослойная нейронная сеть (Single-layer neural network ) - сеть, в которой сигналы от входного слоя сразу подаются на выходной слой, который и преобразует сигнал и сразу же выдает ответ.

Многослойные нейронные сети

Такие сети, помимо входного и выходного слоев нейронов, характеризуются еще и скрытым слоем (слоями). Понять их расположение просто – эти слои находятся между входным и выходным слоями.

Такая структура нейронных сетей копирует многослойную структуру определенных отделов мозга.

Название скрытый слой получил неслучайно. Дело в том, что только относительно недавно были разработаны методы обучения нейронов скрытого слоя. До этого обходились только однослойными нейросетями.

Многослойные нейронные сети обладают гораздо большими возможностями, чем однослойные.

Работу скрытых слоев нейронов можно сравнить с работой большого завода. Продукт (выходной сигнал) на заводе собирается по стадиям. После каждого станка получается какой-то промежуточный результат. Скрытые слои тоже преобразуют входные сигналы в некоторые промежуточные результаты.

Многослойная нейронная сеть (Multilayer neural network ) - нейронная сеть, состоящая из входного, выходного и расположенного(ых) между ними одного (нескольких) скрытых слоев нейронов.

Сети прямого распространения

Можно заметить одну очень интересную деталь на картинках нейросетей в примерах выше.

Во всех примерах стрелки строго идут слева направо, то есть сигнал в таких сетях идет строго от входного слоя к выходному.

Сети прямого распространения (Feedforward neural network ) (feedforward сети) - искусственные нейронные сети, в которых сигнал распространяется строго от входного слоя к выходному. В обратном направлении сигнал не распространяется.

Такие сети широко используются и вполне успешно решают определенный класс задач: прогнозирование, кластеризация и распознавание.

Однако никто не запрещает сигналу идти и в обратную сторону.

Сети с обратными связями

В сетях такого типа сигнал может идти и в обратную сторону. В чем преимущество?

Дело в том, что в сетях прямого распространения выход сети определяется входным сигналом и весовыми коэффициентами при искусственных нейронах.

А в сетях с обратными связями выходы нейронов могут возвращаться на входы. Это означает, что выход какого-нибудь нейрона определяется не только его весами и входным сигналом, но еще и предыдущими выходами (так как они снова вернулись на входы).

Возможность сигналов циркулировать в сети открывает новые, удивительные возможности нейронных сетей. С помощью таких сетей можно создавать нейросети, восстанавливающие или дополняющие сигналы. Другими словами такие нейросети имеют свойства кратковременной памяти (как у человека).

Сети с обратными связями (Recurrent neural network ) - искусственные нейронные сети, в которых выход нейрона может вновь подаваться на его вход. В более общем случае это означает возможность распространения сигнала от выходов к входам.

Обучение нейронной сети

Теперь давайте чуть более подробно рассмотрим вопрос обучения нейронной сети. Что это такое? И каким образом это происходит?

Что такое обучение сети?

Искусственная нейронная сеть – это совокупность искусственных нейронов. Теперь давайте возьмем, например, 100 нейронов и соединим их друг с другом. Ясно, что при подаче сигнала на вход, мы получим что-то бессмысленное на выходе.

Значит нам надо менять какие-то параметры сети до тех пор, пока входной сигнал не преобразуется в нужный нам выходной.

Что мы можем менять в нейронной сети?

Изменять общее количество искусственных нейронов бессмысленно по двум причинам. Во-первых, увеличение количества вычислительных элементов в целом лишь делает систему тяжеловеснее и избыточнее. Во-вторых, если вы соберете 1000 дураков вместо 100, то они все-равно не смогут правильно ответить на вопрос.

Сумматор изменить не получится, так как он выполняет одну жестко заданную функцию – складывать. Если мы его заменим на что-то или вообще уберем, то это вообще уже не будет искусственным нейроном.

Если менять у каждого нейрона функцию активации, то мы получим слишком разношерстную и неконтролируемую нейронную сеть. К тому же, в большинстве случаев нейроны в нейронных сетях одного типа. То есть они все имеют одну и ту же функцию активации.

Остается только один вариант – менять веса связей .

Обучение нейронной сети (Training) - поиск такого набора весовых коэффициентов, при котором входной сигнал после прохода по сети преобразуется в нужный нам выходной.

Такой подход к термину «обучение нейронной сети» соответствует и биологическим нейросетям. Наш мозг состоит из огромного количества связанных друг с другом нейросетей. Каждая из них в отдельности состоит из нейронов одного типа (функция активации одинаковая). Мы обучаемся благодаря изменению синапсов – элементов, которые усиливают/ослабляют входной сигнал.

Однако есть еще один важный момент. Если обучать сеть, используя только один входной сигнал, то сеть просто «запомнит правильный ответ». Со стороны будет казаться, что она очень быстро «обучилась». И как только вы подадите немного измененный сигнал, ожидая увидеть правильный ответ, то сеть выдаст бессмыслицу.

В самом деле, зачем нам сеть, определяющая лицо только на одном фото. Мы ждем от сети способности обобщать какие-то признаки и узнавать лица и на других фотографиях тоже.

Именно с этой целью и создаются обучающие выборки .

Обучающая выборка (Training set ) - конечный набор входных сигналов (иногда вместе с правильными выходными сигналами), по которым происходит обучение сети.

После обучения сети, то есть когда сеть выдает корректные результаты для всех входных сигналов из обучающей выборки, ее можно использовать на практике.

Однако прежде чем пускать свежеиспеченную нейросеть в бой, часто производят оценку качества ее работы на так называемой тестовой выборке .

Тестовая выборка (Testing set ) - конечный набор входных сигналов (иногда вместе с правильными выходными сигналами), по которым происходит оценка качества работы сети.

Мы поняли, что такое «обучение сети» – подбор правильного набора весов. Теперь возникает вопрос – а как можно обучать сеть? В самом общем случае есть два подхода, приводящие к разным результатам: обучение с учителем и обучение без учителя.

Обучение с учителем

Суть данного подхода заключается в том, что вы даете на вход сигнал, смотрите на ответ сети, а затем сравниваете его с уже готовым, правильным ответом.

Важный момент. Не путайте правильные ответы и известный алгоритм решения! Вы можете обвести пальцем лицо на фото (правильный ответ), но не сможете сказать, как это сделали (известный алгоритм). Тут такая же ситуация.

Затем, с помощью специальных алгоритмов, вы меняете веса связей нейронной сети и снова даете ей входной сигнал. Сравниваете ее ответ с правильным и повторяете этот процесс до тех пор, пока сеть не начнет отвечать с приемлемой точностью (как я говорил в 1 главе, однозначно точных ответов сеть давать не может).

Обучение с учителем (Supervised learning ) - вид обучения сети, при котором ее веса меняются так, чтобы ответы сети минимально отличались от уже готовых правильных ответов.

Где взять правильные ответы?

Если мы хотим, чтобы сеть узнавала лица, мы можем создать обучающую выборку на 1000 фотографий (входные сигналы) и самостоятельно выделить на ней лица (правильные ответы).

Если мы хотим, чтобы сеть прогнозировала рост/падение цен, то обучающую выборку надо делать, основываясь на прошлых данных. В качестве входных сигналов можно брать определенные дни, общее состояние рынка и другие параметры. А в качестве правильных ответов – рост и падение цены в те дни.

Стоит отметить, что учитель, конечно же, не обязательно человек. Дело в том, что порой сеть приходится тренировать часами и днями, совершая тысячи и десятки тысяч попыток. В 99% случаев эту роль выполняет компьютер, а точнее, специальная компьютерная программа.

Обучение без учителя

Обучение без учителя применяют тогда, когда у нас нет правильных ответов на входные сигналы. В этом случае вся обучающая выборка состоит из набора входных сигналов.

Что же происходит при таком обучении сети? Оказывается, что при таком «обучении» сеть начинает выделять классы подаваемых на вход сигналов. Короче говоря – сеть начинает кластеризацию.

Например, вы демонстрируете сети конфеты, пирожные и торты. Вы никак не регулируете работу сети. Вы просто подаете на ее входы данные о данном объекте. Со временем сеть начнет выдавать сигналы трех разных типов, которые и отвечают за объекты на входе.

Обучение без учителя (Unsupervised learning ) - вид обучения сети, при котором сеть самостоятельно классифицирует входные сигналы. Правильные (эталонные) выходные сигналы не демонстрируются.

Выводы

В этой главе вы узнали все о структуре искусственного нейрона, а также получили полное представление о том, как он работает (и о его математической модели).

Более того, вы теперь знаете о различных видах искусственных нейронных сетей: однослойные, многослойные, а также feedforward сети и сети с обратными связями.

Вы также ознакомились с тем, что представляет собой обучение сети с учителем и без учителя.

Вы уже знаете необходимую теорию. Последующие главы – рассмотрение конкретных видов нейронных сетей, конкретные алгоритмы их обучения и практика программирования.

Вопросы и задачи

Материал этой главы надо знать очень хорошо, так как в ней содержатся основные теоретические сведения по искусственным нейронным сетям. Обязательно добейтесь уверенных и правильных ответов на все нижеприведенные вопросы и задачи.

Опишите упрощения ИНС по сравнению с биологическими нейросетями.

1. Сложную и запутанную структуру биологических нейронных сетей упрощают и представляют в виде схем. Оставляют только модель обработки сигнала.

2. Природа электрических сигналов в нейронных сетях одна и та же. Разница только в их величине. Убираем электрические сигналы, а вместо них используем числа, обозначающие величину проходящего сигнала.

Функцию активации часто обозначают за ​\(\phi(net) \) ​.

Запишите математическую модель искусственного нейрона.

Искусственный нейрон c ​\(n \) ​ входами преобразовывает входной сигнал (число) в выходной сигнал (число) следующим образом:

\[ out=\phi\left(\sum\limits^n_{i=1}x_iw_i\right) \]

Чем отличаются однослойные и многослойные нейронные сети?

Однослойные нейронные сети состоят из одного вычислительного слоя нейронов. Входной слой подает сигналы сразу на выходной слой, который и преобразует сигнал, и сразу выдает результат.

Многослойные нейронные сети, помимо входного и выходного слоев, имеют еще и скрытые слои. Эти скрытые слои проводят какие-то внутренние промежуточные преобразования, наподобие этапов производства продуктов на заводе.

В чем отличие feedforward сетей от сетей с обратными связями?

Сети прямого распространения (feedforward сети) допускают прохождение сигнала только в одном направлении – от входов к выходам. Сети с обратными связями данных ограничений не имеют, и выходы нейронов могут вновь подаваться на входы.

Что такое обучающая выборка? В чем ее смысл?

Перед тем, как использовать сеть на практике (например, для решения текущих задач, ответов на которые у вас нет), необходимо собрать коллекцию задач с готовыми ответами, на которой и тренировать сеть. Это коллекция и называется обучающей выборкой.

Если собрать слишком маленький набор входных и выходных сигналов, то сеть просто запомнит ответы и цель обучения не будет достигнута.

Что понимают под обучением сети?

Под обучением сети понимают процесс изменения весовых коэффициентов искусственных нейронов сети с целью подобрать такую их комбинацию, которая преобразует входной сигнал в корректный выходной.

Что такое обучение с учителем и без него?

При обучении сети с учителем ей на входы подают сигналы, а затем сравнивают ее выход с заранее известным правильным выходом. Этот процесс повторяют до тех пор, пока не будет достигнута необходимая точность ответов.

Если сети только подают входные сигналы, без сравнения их с готовыми выходами, то сеть начинает самостоятельную классификацию этих входных сигналов. Другими словами она выполняет кластеризацию входных сигналов. Такое обучение называют обучением без учителя.

Добрый день, меня зовут Наталия Ефремова, и я research scientist в компании NtechLab. Сегодня я буду рассказывать про виды нейронных сетей и их применение.

Сначала скажу пару слов о нашей компании. Компания новая, может быть многие из вас еще не знают, чем мы занимаемся. В прошлом году мы выиграли состязание MegaFace . Это международное состязание по распознаванию лиц. В этом же году была открыта наша компания, то есть мы на рынке уже около года, даже чуть больше. Соответственно, мы одна из лидирующих компаний в распознавании лиц и обработке биометрических изображений.

Первая часть моего доклада будет направлена тем, кто незнаком с нейронными сетями. Я занимаюсь непосредственно deep learning. В этой области я работаю более 10 лет. Хотя она появилась чуть меньше, чем десятилетие назад, раньше были некие зачатки нейронных сетей, которые были похожи на систему deep learning.

В последние 10 лет deep learning и компьютерное зрение развивались неимоверными темпами. Все, что сделано значимого в этой области, произошло в последние лет 6.

Я расскажу о практических аспектах: где, когда, что применять в плане deep learning для обработки изображений и видео, для распознавания образов и лиц, поскольку я работаю в компании, которая этим занимается. Немножко расскажу про распознавание эмоций, какие подходы используются в играх и робототехнике. Также я расскажу про нестандартное применение deep learning, то, что только выходит из научных институтов и пока что еще мало применяется на практике, как это может применяться, и почему это сложно применить.

Доклад будет состоять из двух частей. Так как большинство знакомы с нейронными сетями, сначала я быстро расскажу, как работают нейронные сети, что такое биологические нейронные сети, почему нам важно знать, как это работает, что такое искусственные нейронные сети, и какие архитектуры в каких областях применяются.

Сразу извиняюсь, я буду немного перескакивать на английскую терминологию, потому что большую часть того, как называется это на русском языке, я даже не знаю. Возможно вы тоже.

Итак, первая часть доклада будет посвящена сверточным нейронным сетям. Я расскажу, как работают convolutional neural network (CNN), распознавание изображений на примере из распознавания лиц. Немного расскажу про рекуррентные нейронные сети recurrent neural network (RNN) и обучение с подкреплением на примере систем deep learning.

В качестве нестандартного применения нейронных сетей я расскажу о том, как CNN работает в медицине для распознавания воксельных изображений, как используются нейронные сети для распознавания бедности в Африке.

Что такое нейронные сети

Прототипом для создания нейронных сетей послужили, как это ни странно, биологические нейронные сети. Возможно, многие из вас знают, как программировать нейронную сеть, но откуда она взялась, я думаю, некоторые не знают. Две трети всей сенсорной информации, которая к нам попадает, приходит с зрительных органов восприятия. Более одной трети поверхности нашего мозга заняты двумя самыми главными зрительными зонами - дорсальный зрительный путь и вентральный зрительный путь.

Дорсальный зрительный путь начинается в первичной зрительной зоне, в нашем темечке и продолжается наверх, в то время как вентральный путь начинается на нашем затылке и заканчивается примерно за ушами. Все важное распознавание образов, которое у нас происходит, все смыслонесущее, то что мы осознаём, проходит именно там же, за ушами.

Почему это важно? Потому что часто нужно для понимания нейронных сетей. Во-первых, все об этом рассказывают, и я уже привыкла что так происходит, а во-вторых, дело в том, что все области, которые используются в нейронных сетях для распознавания образов, пришли к нам именно из вентрального зрительного пути, где каждая маленькая зона отвечает за свою строго определенную функцию.

Изображение попадает к нам из сетчатки глаза, проходит череду зрительных зон и заканчивается в височной зоне.

В далекие 60-е годы прошлого века, когда только начиналось изучение зрительных зон мозга, первые эксперименты проводились на животных, потому что не было fMRI. Исследовали мозг с помощью электродов, вживлённых в различные зрительные зоны.

Первая зрительная зона была исследована Дэвидом Хьюбелем и Торстеном Визелем в 1962 году. Они проводили эксперименты на кошках. Кошкам показывались различные движущиеся объекты. На что реагировали клетки мозга, то и было тем стимулом, которое распознавало животное. Даже сейчас многие эксперименты проводятся этими драконовскими способами. Но тем не менее это самый эффективный способ узнать, что делает каждая мельчайшая клеточка в нашем мозгу.

Таким же способом были открыты еще многие важные свойства зрительных зон, которые мы используем в deep learning сейчас. Одно из важнейших свойств - это увеличение рецептивных полей наших клеток по мере продвижения от первичных зрительных зон к височным долям, то есть более поздним зрительным зонам. Рецептивное поле - это та часть изображения, которую обрабатывает каждая клеточка нашего мозга. У каждой клетки своё рецептивное поле. Это же свойство сохраняется и в нейронных сетях, как вы, наверное, все знаете.

Также с возрастанием рецептивных полей увеличиваются сложные стимулы, которые обычно распознают нейронные сети.

Здесь вы видите примеры сложности стимулов, различных двухмерных форм, которые распознаются в зонах V2, V4 и различных частях височных полей у макак. Также проводятся некоторое количество экспериментов на МРТ.

Здесь вы видите, как проводятся такие эксперименты. Это 1 нанометровая часть зон IT cortex"a мартышки при распознавании различных объектов. Подсвечено то, где распознается.

Просуммируем. Важное свойство, которое мы хотим перенять у зрительных зон - это то, что возрастают размеры рецептивных полей, и увеличивается сложность объектов, которые мы распознаем.

Компьютерное зрение

До того, как мы научились это применять к компьютерному зрению - в общем, как такового его не было. Во всяком случае, оно работало не так хорошо, как работает сейчас.

Все эти свойства мы переносим в нейронную сеть, и вот оно заработало, если не включать небольшое отступление к датасетам, о котором расскажу попозже.

Но сначала немного о простейшем перцептроне. Он также образован по образу и подобию нашего мозга. Простейший элемент напоминающий клетку мозга - нейрон. Имеет входные элементы, которые по умолчанию располагаются слева направо, изредка снизу вверх. Слева это входные части нейрона, справа выходные части нейрона.

Простейший перцептрон способен выполнять только самые простые операции. Для того, чтобы выполнять более сложные вычисления, нам нужна структура с большим количеством скрытых слоёв.

В случае компьютерного зрения нам нужно еще больше скрытых слоёв. И только тогда система будет осмысленно распознавать то, что она видит.

Итак, что происходит при распознавании изображения, я расскажу на примере лиц.

Для нас посмотреть на эту картинку и сказать, что на ней изображено именно лицо статуи, достаточно просто. Однако до 2010 года для компьютерного зрения это было невероятно сложной задачей. Те, кто занимался этим вопросом до этого времени, наверное, знают насколько тяжело было описать объект, который мы хотим найти на картинке без слов.

Нам нужно это было сделать каким-то геометрическим способом, описать объект, описать взаимосвязи объекта, как могут эти части относиться к друг другу, потом найти это изображение на объекте, сравнить их и получить, что мы распознали плохо. Обычно это было чуть лучше, чем подбрасывание монетки. Чуть лучше, чем chance level.

Сейчас это происходит не так. Мы разбиваем наше изображение либо на пиксели, либо на некие патчи: 2х2, 3х3, 5х5, 11х11 пикселей - как удобно создателям системы, в которой они служат входным слоем в нейронную сеть.

Сигналы с этих входных слоёв передаются от слоя к слою с помощью синапсов, каждый из слоёв имеет свои определенные коэффициенты. Итак, мы передаём от слоя к слою, от слоя к слою, пока мы не получим, что мы распознали лицо.

Условно все эти части можно разделить на три класса, мы их обозначим X, W и Y, где Х - это наше входное изображение, Y - это набор лейблов, и нам нужно получить наши веса. Как мы вычислим W?

При наличии нашего Х и Y это, кажется, просто. Однако то, что обозначено звездочкой, очень сложная нелинейная операция, которая, к сожалению, не имеет обратной. Даже имея 2 заданных компоненты уравнения, очень сложно ее вычислить. Поэтому нам нужно постепенно, методом проб и ошибок, подбором веса W сделать так, чтобы ошибка максимально уменьшилась, желательно, чтобы стала равной нулю.

Этот процесс происходит итеративно, мы постоянно уменьшаем, пока не находим то значение веса W, которое нас достаточно устроит.

К слову, ни одна нейронная сеть, с которой я работала, не достигала ошибки, равной нулю, но работала при этом достаточно хорошо.

Перед вами первая сеть, которая победила на международном соревновании ImageNet в 2012 году. Это так называемый AlexNet. Это сеть, которая впервые заявила о себе, о том, что существует convolutional neural networks и с тех самых пор на всех международных состязаниях уже convolutional neural nets не сдавали своих позиций никогда.

Несмотря на то, что эта сеть достаточно мелкая (в ней всего 7 скрытых слоёв), она содержит 650 тысяч нейронов с 60 миллионами параметров. Для того, чтобы итеративно научиться находить нужные веса, нам нужно очень много примеров.

Нейронная сеть учится на примере картинки и лейбла. Как нас в детстве учат «это кошка, а это собака», так же нейронные сети обучаются на большом количестве картинок. Но дело в том, что до 2010 не существовало достаточно большого data set’a, который способен был бы научить такое количество параметров распознавать изображения.

Самые большие базы данных, которые существовали до этого времени: PASCAL VOC, в который было всего 20 категорий объектов, и Caltech 101, который был разработан в California Institute of Technology. В последнем была 101 категория, и это было много. Тем же, кто не сумел найти свои объекты ни в одной из этих баз данных, приходилось стоить свои базы данных, что, я скажу, страшно мучительно.

Однако, в 2010 году появилась база ImageNet, в которой было 15 миллионов изображений, разделённые на 22 тысячи категорий. Это решило нашу проблему обучения нейронных сетей. Сейчас все желающие, у кого есть какой-либо академический адрес, могут спокойно зайти на сайт базы, запросить доступ и получить эту базу для тренировки своих нейронных сетей. Они отвечают достаточно быстро, по-моему, на следующий день.

По сравнению с предыдущими data set’ами, это очень большая база данных.

На примере видно, насколько было незначительно все то, что было до неё. Одновременно с базой ImageNet появилось соревнование ImageNet, международный challenge, в котором все команды, желающие посоревноваться, могут принять участие.

В этом году победила сеть, созданная в Китае, в ней было 269 слоёв. Не знаю, сколько параметров, подозреваю, тоже много.

Архитектура глубинной нейронной сети

Условно ее можно разделить на 2 части: те, которые учатся, и те, которые не учатся.

Чёрным обозначены те части, которые не учатся, все остальные слои способны обучаться. Существует множество определений того, что находится внутри каждого сверточного слоя. Одно из принятых обозначений - один слой с тремя компонентами разделяют на convolution stage, detector stage и pooling stage.

Не буду вдаваться в детали, еще будет много докладов, в которых подробно рассмотрено, как это работает. Расскажу на примере.

Поскольку организаторы просили меня не упоминать много формул, я их выкинула совсем.

Итак, входное изображение попадает в сеть слоёв, которые можно назвать фильтрами разного размера и разной сложности элементов, которые они распознают. Эти фильтры составляют некий свой индекс или набор признаков, который потом попадает в классификатор. Обычно это либо SVM, либо MLP - многослойный перцептрон, кому что удобно.

По образу и подобию с биологической нейронной сетью объекты распознаются разной сложности. По мере увеличения количества слоёв это все потеряло связь с cortex’ом, поскольку там ограничено количество зон в нейронной сети. 269 или много-много зон абстракции, поэтому сохраняется только увеличение сложности, количества элементов и рецептивных полей.

Если рассмотреть на примере распознавания лиц, то у нас рецептивное поле первого слоя будет маленьким, потом чуть побольше, побольше, и так до тех пор, пока наконец мы не сможем распознавать уже лицо целиком.

С точки зрения того, что находится у нас внутри фильтров, сначала будут наклонные палочки плюс немного цвета, затем части лиц, а потом уже целиком лица будут распознаваться каждой клеточкой слоя.

Есть люди, которые утверждают, что человек всегда распознаёт лучше, чем сеть. Так ли это?

В 2014 году ученые решили проверить, насколько мы хорошо распознаем в сравнении с нейронными сетями. Они взяли 2 самые лучшие на данный момент сети - это AlexNet и сеть Мэттью Зиллера и Фергюса, и сравнили с откликом разных зон мозга макаки, которая тоже была научена распознавать какие-то объекты. Объекты были из животного мира, чтобы обезьяна не запуталась, и были проведены эксперименты, кто же распознаёт лучше.

Так как получить отклик от мартышки внятно невозможно, ей вживили электроды и мерили непосредственно отклик каждого нейрона.

Оказалось, что в нормальных условиях клетки мозга реагировали так же хорошо, как и state of the art model на тот момент, то есть сеть Мэттью Зиллера.

Однако при увеличении скорости показа объектов, увеличении количества шумов и объектов на изображении скорость распознавания и его качество нашего мозга и мозга приматов сильно падают. Даже самая простая сверточная нейронная сеть распознаёт объекты лучше. То есть официально нейронные сети работают лучше, чем наш мозг.

Классические задачи сверточных нейронных сетей

Их на самом деле не так много, они относятся к трём классам. Среди них - такие задачи, как идентификация объекта, семантическая сегментация, распознавание лиц, распознавание частей тела человека, семантическое определение границ, выделение объектов внимания на изображении и выделение нормалей к поверхности. Их условно можно разделить на 3 уровня: от самых низкоуровневых задач до самых высокоуровневых задач.

На примере этого изображения рассмотрим, что делает каждая из задач.

  • Определение границ - это самая низкоуровневая задача, для которой уже классически применяются сверточные нейронные сети.
  • Определение вектора к нормали позволяет нам реконструировать трёхмерное изображение из двухмерного.
  • Saliency, определение объектов внимания - это то, на что обратил бы внимание человек при рассмотрении этой картинки.
  • Семантическая сегментация позволяет разделить объекты на классы по их структуре, ничего не зная об этих объектах, то есть еще до их распознавания.
  • Семантическое выделение границ - это выделение границ, разбитых на классы.
  • Выделение частей тела человека .
  • И самая высокоуровневая задача - распознавание самих объектов , которое мы сейчас рассмотрим на примере распознавания лиц.

Распознавание лиц

Первое, что мы делаем - пробегаем face detector"ом по изображению для того, чтобы найти лицо. Далее мы нормализуем, центрируем лицо и запускаем его на обработку в нейронную сеть. После чего получаем набор или вектор признаков однозначно описывающий фичи этого лица.

Затем мы можем этот вектор признаков сравнить со всеми векторами признаков, которые хранятся у нас в базе данных, и получить отсылку на конкретного человека, на его имя, на его профиль - всё, что у нас может храниться в базе данных.

Именно таким образом работает наш продукт FindFace - это бесплатный сервис, который помогает искать профили людей в базе «ВКонтакте».

Кроме того, у нас есть API для компаний, которые хотят попробовать наши продукты. Мы предоставляем сервис по детектированию лиц, по верификации и по идентификации пользователей.

Сейчас у нас разработаны 2 сценария. Первый - это идентификация, поиск лица по базе данных. Второе - это верификация, это сравнение двух изображений с некой вероятностью, что это один и тот же человек. Кроме того, у нас сейчас в разработке распознавание эмоций, распознавание изображений на видео и liveness detection - это понимание, живой ли человек перед камерой или фотография.

Немного статистики. При идентификации, при поиске по 10 тысячам фото у нас точность около 95% в зависимости от качества базы, 99% точность верификации. И помимо этого данный алгоритм очень устойчив к изменениям - нам необязательно смотреть в камеру, у нас могут быть некие загораживающие предметы: очки, солнечные очки, борода, медицинская маска. В некоторых случаях мы можем победить даже такие невероятные сложности для компьютерного зрения, как и очки, и маска.

Очень быстрый поиск, затрачивается 0,5 секунд на обработку 1 миллиарда фотографий. Нами разработан уникальный индекс быстрого поиска. Также мы можем работать с изображениями низкого качества, полученных с CCTV-камер. Мы можем обрабатывать это все в режиме реального времени. Можно загружать фото через веб-интерфейс, через Android, iOS и производить поиск по 100 миллионам пользователей и их 250 миллионам фотографий.

Как я уже говорила мы заняли первое место на MegaFace competition - аналог для ImageNet, но для распознавания лиц. Он проводится уже несколько лет, в прошлом году мы были лучшими среди 100 команд со всего мира, включая Google.

Рекуррентные нейронные сети

Recurrent neural networks мы используем тогда, когда нам недостаточно распознавать только изображение. В тех случаях, когда нам важно соблюдать последовательность, нам нужен порядок того, что у нас происходит, мы используем обычные рекуррентные нейронные сети.

Это применяется для распознавания естественного языка, для обработки видео, даже используется для распознавания изображений.

Про распознавание естественного языка я рассказывать не буду - после моего доклада еще будут два, которые будут направлены на распознавание естественного языка. Поэтому я расскажу про работу рекуррентных сетей на примере распознавания эмоций.

Что такое рекуррентные нейронные сети? Это примерно то же самое, что и обычные нейронные сети, но с обратной связью. Обратная связь нам нужна, чтобы передавать на вход нейронной сети или на какой-то из ее слоев предыдущее состояние системы.

Предположим, мы обрабатываем эмоции. Даже в улыбке - одной из самых простых эмоций - есть несколько моментов: от нейтрального выражения лица до того момента, когда у нас будет полная улыбка. Они идут друг за другом последовательно. Чтоб это хорошо понимать, нам нужно уметь наблюдать за тем, как это происходит, передавать то, что было на предыдущем кадре в следующий шаг работы системы.

В 2005 году на состязании Emotion Recognition in the Wild специально для распознавания эмоций команда из Монреаля представила рекуррентную систему, которая выглядела очень просто. У нее было всего несколько свёрточных слоев, и она работала исключительно с видео. В этом году они добавили также распознавание аудио и cагрегировали покадровые данные, которые получаются из convolutional neural networks, данные аудиосигнала с работой рекуррентной нейронной сети (с возвратом состояния) и получили первое место на состязании.

Обучение с подкреплением

Следующий тип нейронных сетей, который очень часто используется в последнее время, но не получил такой широкой огласки, как предыдущие 2 типа - это deep reinforcement learning, обучение с подкреплением.

Дело в том, что в предыдущих двух случаях мы используем базы данных. У нас есть либо данные с лиц, либо данные с картинок, либо данные с эмоциями с видеороликов. Если у нас этого нет, если мы не можем это отснять, как научить робота брать объекты? Это мы делаем автоматически - мы не знаем, как это работает. Другой пример: составлять большие базы данных в компьютерных играх сложно, да и не нужно, можно сделать гораздо проще.

Все, наверное, слышали про успехи deep reinforcement learning в Atari и в го.

Кто слышал про Atari? Ну кто-то слышал, хорошо. Про AlphaGo думаю слышали все, поэтому я даже не буду рассказывать, что конкретно там происходит.

Что происходит в Atari? Слева как раз изображена архитектура этой нейронной сети. Она обучается, играя сама с собой для того, чтобы получить максимальное вознаграждение. Максимальное вознаграждение - это максимально быстрый исход игры с максимально большим счетом.

Справа вверху - последний слой нейронной сети, который изображает всё количество состояний системы, которая играла сама против себя всего лишь в течение двух часов. Красным изображены желательные исходы игры с максимальным вознаграждением, а голубым - нежелательные. Сеть строит некое поле и движется по своим обученным слоям в то состояние, которого ей хочется достичь.

В робототехнике ситуация состоит немного по-другому. Почему? Здесь у нас есть несколько сложностей. Во-первых, у нас не так много баз данных. Во-вторых, нам нужно координировать сразу три системы: восприятие робота, его действия с помощью манипуляторов и его память - то, что было сделано в предыдущем шаге и как это было сделано. В общем это все очень сложно.

Дело в том, что ни одна нейронная сеть, даже deep learning на данный момент, не может справится с этой задачей достаточно эффективно, поэтому deep learning только исключительно кусочки того, что нужно сделать роботам. Например, недавно Сергей Левин предоставил систему, которая учит робота хватать объекты.

Вот здесь показаны опыты, которые он проводил на своих 14 роботах-манипуляторах.

Что здесь происходит? В этих тазиках, которые вы перед собой видите, различные объекты: ручки, ластики, кружки поменьше и побольше, тряпочки, разные текстуры, разной жесткости. Неясно, как научить робота захватывать их. В течение многих часов, а даже, вроде, недель, роботы тренировались, чтобы уметь захватывать эти предметы, составлялись по этому поводу базы данных.

Базы данных - это некий отклик среды, который нам нужно накопить для того, чтобы иметь возможность обучить робота что-то делать в дальнейшем. В дальнейшем роботы будут обучаться на этом множестве состояний системы.

Нестандартные применения нейронных сетей

Это к сожалению, конец, у меня не много времени. Я расскажу про те нестандартные решения, которые сейчас есть и которые, по многим прогнозам, будут иметь некое приложение в будущем.

Итак, ученые Стэнфорда недавно придумали очень необычное применение нейронной сети CNN для предсказания бедности. Что они сделали?

На самом деле концепция очень проста. Дело в том, что в Африке уровень бедности зашкаливает за все мыслимые и немыслимые пределы. У них нет даже возможности собирать социальные демографические данные. Поэтому с 2005 года у нас вообще нет никаких данных о том, что там происходит.

Учёные собирали дневные и ночные карты со спутников и скармливали их нейронной сети в течение некоторого времени.

Нейронная сеть была преднастроена на ImageNet"е. То есть первые слои фильтров были настроены так, чтобы она умела распознавать уже какие-то совсем простые вещи, например, крыши домов, для поиска поселения на дневных картах. Затем дневные карты были сопоставлены с картами ночной освещенности того же участка поверхности для того, чтобы сказать, насколько есть деньги у населения, чтобы хотя бы освещать свои дома в течение ночного времени.

Здесь вы видите результаты прогноза, построенного нейронной сетью. Прогноз был сделан с различным разрешением. И вы видите - самый последний кадр - реальные данные, собранные правительством Уганды в 2005 году.

Можно заметить, что нейронная сеть составила достаточно точный прогноз, даже с небольшим сдвигом с 2005 года.

Были конечно и побочные эффекты. Ученые, которые занимаются deep learning, всегда с удивлением обнаруживают разные побочные эффекты. Например, как те, что сеть научилась распознавать воду, леса, крупные строительные объекты, дороги - все это без учителей, без заранее построенных баз данных. Вообще полностью самостоятельно. Были некие слои, которые реагировали, например, на дороги.

И последнее применение о котором я хотела бы поговорить - семантическая сегментация 3D изображений в медицине. Вообще medical imaging - это сложная область, с которой очень сложно работать.

Для этого есть несколько причин.

  • У нас очень мало баз данных. Не так легко найти картинку мозга, к тому же повреждённого, и взять ее тоже ниоткуда нельзя.
  • Даже если у нас есть такая картинка, нужно взять медика и заставить его вручную размещать все многослойные изображения, что очень долго и крайне неэффективно. Не все медики имеют ресурсы для того, чтобы этим заниматься.
  • Нужна очень высокая точность. Медицинская система не может ошибаться. При распознавании, например, котиков, не распознали - ничего страшного. А если мы не распознали опухоль, то это уже не очень хорошо. Здесь особо свирепые требования к надежности системы.
  • Изображения в трехмерных элементах - вокселях, не в пикселях, что доставляет дополнительные сложности разработчикам систем.
Но как обошли этот вопрос в данном случае? CNN была двупотоковая. Одна часть обрабатывала более нормальное разрешение, другая - чуть более ухудшенное разрешение для того, чтобы уменьшить количество слоёв, которые нам нужно обучать. За счёт этого немного сократилось время на тренировку сети.

Где это применяется: определение повреждений после удара, для поиска опухоли в мозгу, в кардиологии для определения того, как работает сердце.

Вот пример для определения объема плаценты.

Автоматически это работает хорошо, но не настолько, чтобы это было выпущено в производство, поэтому пока только начинается. Есть несколько стартапов для создания таких систем медицинского зрения. Вообще в deep learning очень много стартапов в ближайшее время. Говорят, что venture capitalists в последние полгода выделили больше бюджета на стартапы обрасти deep learning, чем за прошедшие 5 лет.

Эта область активно развивается, много интересных направлений. Мы с вами живем в интересное время. Если вы занимаетесь deep learning, то вам, наверное, пора открывать свой стартап.

Ну на этом я, наверное, закруглюсь. Спасибо вам большое.

В последнее время все чаще и чаще говорят про так званные нейронные сети, дескать вскоре они будут активно применятся и в роботехнике, и в машиностроении, и во многих других сферах человеческой деятельности, ну а алгоритмы поисковых систем, того же Гугла уже потихоньку начинают на них работать. Что же представляют собой эти нейронные сети, как они работают, какое у них применение и чем они могут стать полезными для нас, обо всем этом читайте дальше.

Что такое нейронные сети

Нейронные сети – это одно из направлений научных исследований в области создания искусственного интеллекта (ИИ) в основе которого лежит стремление имитировать нервную систему человека. В том числе ее (нервной системы) способность исправлять ошибки и самообучаться. Все это, хотя и несколько грубо должно позволить смоделировать работу человеческого мозга.

Биологические нейронные сети

Но это определение абзацем выше чисто техническое, если же говорить языком биологии, то нейронная сеть представляет собой нервную систему человека, ту совокупность нейронов в нашем мозге, благодаря которым мы думаем, принимаем те или иные решения, воспринимаем мир вокруг нас.

Биологический нейрон – это специальная клетка, состоящая из ядра, тела и отростков, к тому же имеющая тесную связь с тысячами других нейронов. Через эту связь то и дело передаются электрохимические импульсы, приводящие всю нейронную сеть в состояние возбуждение или наоборот спокойствия. Например, какое-то приятное и одновременно волнующее событие (встреча любимого человека, победа в соревновании и т. д.) породит электрохимический импульс в нейронной сети, которая располагается в нашей голове, что приведет к ее возбуждению. Как следствие, нейронная сеть в нашем мозге свое возбуждение передаст и другим органам нашего тела и приведет к повышенному сердцебиению, более частому морганию глаз и т. д.

Тут на картинке приведена сильно упрощенная модель биологической нейронной сети мозга. Мы видим, что нейрон состоит из тела клетки и ядра, тело клетки, в свою очередь, имеет множество ответвленных волокон, названых дендритами. Длинные дендриты называются аксонами и имеют протяженность много большую, нежели показано на этом рисунке, посредством аксонов осуществляется связь между нейронами, благодаря ним и работает биологическая нейронная сеть в наших с вами головах.

История нейронных сетей

Какова же история развития нейронных сетей в науке и технике? Она берет свое начало с появлением первых компьютеров или ЭВМ (электронно-вычислительная машина) как их называли в те времена. Так еще в конце 1940-х годов некто Дональд Хебб разработал механизм нейронной сети, чем заложил правила обучения ЭВМ, этих «протокомпьютеров».

Дальнейшая хронология событий была следующей:

  • В 1954 году происходит первое практическое использование нейронных сетей в работе ЭВМ.
  • В 1958 году Франком Розенблатом разработан алгоритм распознавания образов и математическая аннотация к нему.
  • В 1960-х годах интерес к разработке нейронных сетей несколько угас из-за слабых мощностей компьютеров того времени.
  • И снова возродился уже в 1980-х годах, именно в этот период появляется система с механизмом обратной связи, разрабатываются алгоритмы самообучения.
  • К 2000 году мощности компьютеров выросли настолько, что смогли воплотить самые смелые мечты ученых прошлого. В это время появляются программы распознавания голоса, компьютерного зрения и многое другое.

Искусственные нейронные сети

Под искусственными нейронными сетями принято понимать вычислительные системы, имеющие способности к самообучению, постепенному повышению своей производительности. Основными элементами структуры нейронной сети являются:

  • Искусственные нейроны, представляющие собой элементарные, связанные между собой единицы.
  • Синапс – это соединение, которые используется для отправки-получения информации между нейронами.
  • Сигнал – собственно информация, подлежащая передаче.

Применение нейронных сетей

Область применения искусственных нейронных сетей с каждым годом все более расширяется, на сегодняшний день они используются в таких сферах как:

  • Машинное обучение (machine learning), представляющее собой разновидность искусственного интеллекта. В основе его лежит обучение ИИ на примере миллионов однотипных задач. В наше время машинное обучение активно внедряют поисковые системы Гугл, Яндекс, Бинг, Байду. Так на основе миллионов поисковых запросов, которые все мы каждый день вводим в Гугле, их алгоритмы учатся показывать нам наиболее релевантную выдачу, чтобы мы могли найти именно то, что ищем.
  • В роботехнике нейронные сети используются в выработке многочисленных алгоритмов для железных «мозгов» роботов.
  • Архитекторы компьютерных систем пользуются нейронными сетями для решения проблемы параллельных вычислений.
  • С помощью нейронных сетей математики могут разрешать разные сложные математические задачи.

Типы нейронных сетей

В целом для разных задач применяются различные виды и типы нейронных сетей, среди которых можно выделить:

  • сверточные нейронные сети,
  • реккурентные нейронные сети,
  • нейронную сеть Хопфилда.

Сверточные нейронные сети

Сверточные сети являются одними из самых популярных типов искусственных нейронных сетей. Так они доказали свою эффективность в распознавании визуальных образов (видео и изображения), рекомендательных системах и обработке языка.

  • Сверточные нейронные сети отлично масштабируются и могут использоваться для распознавания образов, какого угодно большого разрешения.
  • В этих сетях используются объемные трехмерные нейроны. Внутри одного слоя нейроны связаны лишь небольшим полем, названые рецептивным слоем.
  • Нейроны соседних слоев связаны посредством механизма пространственной локализации. Работу множества таких слоев обеспечивают особые нелинейные фильтры, реагирующие на все большее число пикселей.

Рекуррентные нейронные сети

Рекуррентными называют такие нейронные сети, соединения между нейронами которых, образуют ориентировочный цикл. Имеет такие характеристики:

  • У каждого соединения есть свой вес, он же приоритет.
  • Узлы делятся на два типа, вводные узлы и узлы скрытые.
  • Информация в рекуррентной нейронной сети передается не только по прямой, слой за слоем, но и между самими нейронами.
  • Важной отличительной особенностью рекуррентной нейронной сети является наличие так званой «области внимания», когда машине можно задать определенные фрагменты данных, требующие усиленной обработки.

Рекуррентные нейронные сети применяются в распознавании и обработке текстовых данных (в частотности на их основе работает Гугл переводчик, алгоритм Яндекс «Палех», голосовой помощник Apple Siri).

Нейронные сети, видео

И в завершение интересное видео о нейронных сетях.

К написанию этой статьи меня побудила большая распространенность некоторых заблуждений на тему искусственных нейронных сетей (ИНС), особенно в области представлений о том, что они могут и чего не могут, ну и хотелось бы знать, насколько вопросы ИНС вообще актуальны здесь, стоит ли что-либо обсудить подробнее.

Я хочу рассмотреть несколько известных архитектур ИНС, привести наиболее общие (в следствие чего не всегда абсолютно точные) сведения об их устройстве, описать их сильные и слабые стороны, а также обрисовать перспективы.

Начну с классики.


Многослойный перцептрон
Самая известная и очень старая архитектура, в которой идут подряд несколько слоев нейронов - входной, один или несколько скрытых слоев, и выходной слой. Почти всегда обучается методом обратного распространения ошибки - что автоматически означает, что мы должны предоставить для обучения набор пар «входной вектор - правильный выход». Тогда входной вектор отправится на вход сети, последовательно будут рассчитаны состояния всех промежуточных нейронов, и на выходе образуется выходной вектор, который мы и сравним с правильным. Расхождение даст нам ошибку, которую можно распространить обратно по связям сети, вычислить вклад в итоговую ошибку каждого нейрона, и скорректировать его веса, чтобы ее исправить. Повторив эту процедуру много тысяч раз, возможно выйдет обучить сеть.
Сеть такого типа обычно очень хорошо справляется с задачами, где:
1. ответ действительно зависит только от того, что мы даем на вход сети, и никак не зависит от истории входов (т.е. это не динамический процесс, или, по крайней мере, мы дали на вход исчерпывающую информацию об этом процессе в форме, пригодной для обработки сетью).
2. ответ не зависит/слабо зависит от высоких степеней и/или произведений параметров - функции этого типа сеть строить почти не умеет.
3. в наличии есть достаточно много примеров (желательно иметь не менее сотни примеров на каждую связь сети), или у вас есть большой опыт борьбы с эффектом специализации. Это связано с тем, что имея много коэффициентов, сеть может банально запомнить много конкретных примеров, и выдавать на них отличный результат - но ее прогнозы не будут иметь ничего общего с реальностью в случае, если дать на вход примеры не из обучающей выборки.

Сильные стороны - изучена со всех сторон, хорошо работает на своих задачах, если на некоторой задаче не работает (действительно не работает, а не по криворукости, как это бывает чаще всего) - то это повод утверждать, что задача сложнее, чем казалось.
Слабые стороны - неумение работать с динамическими процессами, необходимость большой обучающей выборки.
Перспективы - никаких существенных. Большинство серьезных задач, которые все еще требуют решения, не входят в класс задач, решаемых многослойным перцептроном c методом обратного распространения ошибки.

Рекуррентный перцептрон
На первый взгляд похож на обычный перцептрон, единственное существенное отличие состоит в том, что его выходы попадают ему же на входы, и участвуют в обработке уже следующего входного вектора. То есть, в случае рекуррентного перцептрона имеет место не набор отдельных, ничем не связанных образов, а некоторый процесс, и значение имеют не только сами входы, но и то, в какой последовательности они поступают. Из-за этого возникают отличия в методе обучения - используется то же самое обратное распространение ошибки, но для того, чтобы ошибка попала по рекуррентной связи в прошлое, используются разные ухищрения (если подойти к задаче «в лоб» - то возникнет проблема ухода ошибки на бесконечное число циклов назад). В остальном же ситуация похожа на обычный перцептрон - для обучения нужно иметь достаточно длинную последовательность пар вход-выход, которую нужно много раз прогнать через сеть, чтобы ее обучить (или же иметь под рукой мат. модель искомого процесса, которую можно гонять во всевозможных условиях, и в реалтайме давать результаты сети для обучения).
Сеть такого типа обычно хорошо решает задачи управления динамическими процессами (начиная от классической задачи стабилизации перевернутого маятника, и до любых систем, которыми вообще хоть как-то получается управлять), предсказания динамических процессов, кроме курса валют:), и вообще всего, где помимо явно наблюдаемого входа у системы есть некоторое внутреннее состояние, которое не совсем понятно как использовать.

Сильные стороны: сеть очень хороша для работы с динамическими процессами
Слабые стороны: если все же не работает, понять в чем проблема - очень затруднительно, в процессе обучения может вылететь в самовозбуждение (когда сигнал, полученный с выхода, забивает все, что приходит по входам), если решение все же получено - сложно понять, можно ли добиться лучших результатов, и каким путем. Другими словами, плохо изучена.
Перспективы: этот подход явно не исчерпал себя в вопросах управления - собственно, на данный момент рекуррентные перцептроны используются довольно редко, хотя их потенциал высок. Интересные результаты может дать подход с непрерывно адаптирующейся к объекту управления сетью, хотя для этого еще необходимо решить проблему неустойчивости обучения.

Ассоциативная память
Это широкий класс сетей, которые в той или иной степени напоминают архитектуру Хопфилда, которая состоит из одного слоя нейронов, выходы которого поступают на его входы в следующий момент времени. Этот слой служит и входом сети (в начальный момент выходы нейронов принимаются равными входному вектору), и ее выходом - значения на нейронах, образовавшиеся в конце работы, считаются ответом сети. Эта сеть меняет свои состояния с течением времени до тех пор, пока состояние не перестанет меняться. Свойства весовой матрицы выбраны таким образом, чтобы устойчивое состояние всегда гарантированно достигалось (и обычно это происходит за несколько шагов). Такая сеть помнит некоторое количество векторов, и при подаче на вход любого вектора, может определить, на какой из запомненных он более всего похож - отсюда и название. Двухслойная модификация этой сети (гетероассоциативная память) может запоминать вектора не по-одному, а по парам разной размерности.
Сети такого типа хорошо справляются с задачами, где нужно определить похожесть вектора на один из стандартных запомненных. Собственно, это единственный класс задач, где они хороши. Также конкретно сеть Хопфилда может использоваться для решения задач оптимизации (например, задачи комивояжера), однако ее эффективность в этой области под вопросом.

Сильные стороны - очень быстрое обучение (т.к. вместо градиентного спуска решается система уравнений), возможность удалить образ из памяти или добавить в память, не затронув остальные, некоторые свойства такой памяти напоминают свойства мозга, и их изучение интересно с такой позиции.
Слабые стороны - очень узкий класс решаемых задач, неумение обобщать примеры, максимальный объем памяти жестко связан с размерностью запоминаемого вектора (ввиду особенностей построения).
Перспективы:
- разработана ядерная (от слова kernel) ассоциативная память, которая способна к обобщению образов, и имеет неограниченный объем памяти (сеть растет по мере заполнения).
- разработана динамическая ассоциативная память, которая запоминает не отдельные образы, а определенные последовательности образов, и поэтому может применяться для распознавания элементов динамических процессов.
- динамическая ассоциативная память демонстрирует способность к генерации отклика, содержащего разные элементы запомненных последовательностей при подаче входного сигнала, соответствующего одновременно разным последовательностям, что, возможно, является некоторой грубой моделью творчества человека.
- гибрид ядерной и динамической ассоциативной памяти может дать новое качество в распознавании последовательностей - например, в распознавании речи.

Спайковые сети
Это особый класс сетей, в которых сигнал представлен не вещественным числом, как во всех ранее рассмотренных сетях, а набором импульсов (спайков) одинаковой амплитуды и длительности, и информация содержится не в амплитуде, а в интервалах между импульсами, в их паттерне. Спайковые нейроны на выходе генерируют спайки, либо одиночные (если суммарный вход не очень большой), или пакеты (если суммарный вход достаточно велик). Этот тип сетей почти полностью копирует процессы, проходящие в мозгу человека, единственное серьезное отличие - для обучения не придумано ничего лучше правила Хебба (которое звучит примерно так: если второй нейрон сработал сразу после первого, то связь от первого ко второму усиливается, а если сразу перед первым - то ослабевает), для которого был придуман ряд небольших усовершенствований, но, к сожалению, повторить свойства мозга в области обучения пока толком не получилось.
Сети такого типа умеют приспосабливать для решения различных задач, решаемых другими сетями, но редко результаты оказываются существенно лучше. В большинстве случаев удается только повторить уже достигнутое.

Сильные стороны: очень интересны для изучения как модели биологических сетей.
Слабые стороны: почти любое практическое применение выглядит необосновано, сети других типов справляются не хуже.
Перспективы: моделирование масштабных спайковых сетей в ближайшие годы вероятно даст много ценной информации о психических расстройствах, позволит классифицировать нормальный и ненормальный режимы работы различных отделов мозга. В более отдаленной перспективе, после создания подходящего алгоритма обучения, такие сети по функциональности сравняются или даже превзойдут другие типы нейросетей, а еще позднее на их основе можно будет собирать структуры, пригодные для прямого подключения к биологическому мозгу, для расширения возможностей интеллекта.

P.S. я намеренно не затрагивал сеть Кохонена и подобные ей архитектуры, т.к. не могу сказать о них ничего нового, и на эту тему здесь уже есть отличная статья.

Искусственная нейронная сеть — совокупность нейронов, взаимодействующих друг с другом. Они способны принимать, обрабатывать и создавать данные. Это настолько же сложно представить, как и работу человеческого мозга. Нейронная сеть в нашем мозгу работает для того, чтобы вы сейчас могли это прочитать: наши нейроны распознают буквы и складывают их в слова.

Искусственная нейронная сеть - это подобие мозга. Изначально она программировалась с целью упростить некоторые сложные вычислительные процессы. Сегодня у нейросетей намного больше возможностей. Часть из них находится у вас в смартфоне. Ещё часть уже записала себе в базу, что вы открыли эту статью. Как всё это происходит и для чего, читайте далее.

С чего всё началось

Людям очень хотелось понять, откуда у человека разум и как работает мозг. В середине прошлого века канадский нейропсихолог Дональд Хебб это понял. Хебб изучил взаимодействие нейронов друг с другом, исследовал, по какому принципу они объединяются в группы (по-научному - ансамбли) и предложил первый в науке алгоритм обучения нейронных сетей.

Спустя несколько лет группа американских учёных смоделировала искусственную нейросеть, которая могла отличать фигуры квадратов от остальных фигур.

Как же работает нейросеть?

Исследователи выяснили, нейронная сеть - это совокупность слоёв нейронов, каждый из которых отвечает за распознавание конкретного критерия: формы, цвета, размера, текстуры, звука, громкости и т. д. Год от года в результате миллионов экспериментов и тонн вычислений к простейшей сети добавлялись новые и новые слои нейронов. Они работают по очереди. Например, первый определяет, квадрат или не квадрат, второй понимает, квадрат красный или нет, третий вычисляет размер квадрата и так далее. Не квадраты, не красные и неподходящего размера фигуры попадают в новые группы нейронов и исследуются ими.

Какими бывают нейронные сети и что они умеют

Учёные развили нейронные сети так, что те научились различать сложные изображения, видео, тексты и речь. Типов нейронных сетей сегодня очень много. Они классифицируются в зависимости от архитектуры - наборов параметров данных и веса этих параметров, некой приоритетности. Ниже некоторые из них.

Свёрточные нейросети

Нейроны делятся на группы, каждая группа вычисляет заданную ей характеристику. В 1993 году французский учёный Ян Лекун показал миру LeNet 1 - первую свёрточную нейронную сеть, которая быстро и точно могла распознавать цифры, написанные на бумаге от руки. Смотрите сами:

Сегодня свёрточные нейронные сети используются в основном с мультимедиными целями: они работают с графикой, аудио и видео.

Рекуррентные нейросети

Нейроны последовательно запоминают информацию и строят дальнейшие действия на основе этих данных. В 1997 году немецкие учёные модифицировали простейшие рекуррентные сети до сетей с долгой краткосрочной памятью. На их основе затем были разработаны сети с управляемыми рекуррентными нейронами.

Сегодня с помощью таких сетей пишутся и переводятся тексты, программируются боты, которые ведут осмысленные диалоги с человеком, создаются коды страниц и программ.

Использование такого рода нейросетей - это возможность анализировать и генерировать данные, составлять базы и даже делать прогнозы.

В 2015 году компания SwiftKey выпустила первую в мире клавиатуру, работающую на рекуррентной нейросети с управляемыми нейронами. Тогда система выдавала подсказки в процессе набранного текста на основе последних введённых слов. В прошлом году разработчики обучили нейросеть изучать контекст набираемого текста, и подсказки стали осмысленными и полезными:

Комбинированные нейросети (свёрточные + рекуррентные)

Такие нейронные сети способны понимать, что находится на изображении, и описывать это. И наоборот: рисовать изображения по описанию. Ярчайший пример продемонстрировал Кайл Макдональд, взяв нейронную сеть на прогулку по Амстердаму. Сеть мгновенно определяла, что находится перед ней. И практически всегда точно:

Нейросети постоянно самообучаются. Благодаря этому процессу:

1. Skype внедрил возможность синхронного перевода уже для 10 языков. Среди которых, на минуточку, есть русский и японский - одни из самых сложных в мире. Конечно, качество перевода требует серьёзной доработки, но сам факт того, что уже сейчас вы можете общаться с коллегами из Японии по-русски и быть уверенными, что вас поймут, вдохновляет.

2. Яндекс на базе нейронных сетей создал два поисковых алгоритма: «Палех» и «Королёв». Первый помогал найти максимально релевантные сайты для низкочастотных запросов. «Палех» изучал заголовки страниц и сопоставлял их смысл со смыслом запросов. На основе «Палеха» появился «Королёв». Этот алгоритм оценивает не только заголовок, но и весь текстовый контент страницы. Поиск становится всё точнее, а владельцы сайтов разумнее начинают подходить к наполнению страниц.

3. Коллеги сеошников из Яндекса создали музыкальную нейросеть: она сочиняет стихи и пишет музыку. Нейрогруппа символично называется Neurona, и у неё уже есть первый альбом:

4. У Google Inbox с помощью нейросетей осуществляется ответ на сообщение. Развитие технологий идет полный ходом, и сегодня сеть уже изучает переписку и генерирует возможные варианты ответа. Можно не тратить время на печать и не бояться забыть какую-нибудь важную договорённость.

5. YouTube использует нейронные сети для ранжирования роликов, причём сразу по двум принципам: одна нейронная сеть изучает ролики и реакции аудитории на них, другая проводит исследование пользователей и их предпочтений. Именно поэтому рекомендации YouTube всегда в тему.

6. Facebook активно работает над DeepText AI - программой для коммуникаций, которая понимает жаргон и чистит чатики от обсценной лексики.

7. Приложения вроде Prisma и Fabby, созданные на нейросетях, создают изображения и видео:

Colorize восстанавливает цвета на чёрно-белых фото (удивите бабушку!).

MakeUp Plus подбирает для девушек идеальную помаду из реального ассортимента реальных брендов: Bobbi Brown, Clinique, Lancome и YSL уже в деле.


8.
Apple и Microsoft постоянно апгрейдят свои нейронные Siri и Contana. Пока они только исполняют наши приказы, но уже в ближайшем будущем начнут проявлять инициативу: давать рекомендации и предугадывать наши желания.

А что ещё нас ждет в будущем?

Самообучающиеся нейросети могут заменить людей: начнут с копирайтеров и корректоров. Уже сейчас роботы создают тексты со смыслом и без ошибок. И делают это значительно быстрее людей. Продолжат с сотрудниками кол-центров, техподдержки, модераторами и администраторами пабликов в соцсетях. Нейронные сети уже умеют учить скрипт и воспроизводить его голосом. А что в других сферах?

Аграрный сектор

Нейросеть внедрят в спецтехнику. Комбайны будут автопилотироваться, сканировать растения и изучать почву, передавая данные нейросети. Она будет решать - полить, удобрить или опрыскать от вредителей. Вместо пары десятков рабочих понадобятся от силы два специалиста: контролирующий и технический.

Медицина

В Microsoft сейчас активно работают над созданием лекарства от рака. Учёные занимаются биопрограммированием - пытаются оцифрить процесс возникновения и развития опухолей. Когда всё получится, программисты смогут найти способ заблокировать такой процесс, по аналогии будет создано лекарство.

Маркетинг

Маркетинг максимально персонализируется. Уже сейчас нейросети за секунды могут определить, какому пользователю, какой контент и по какой цене показать. В дальнейшем участие маркетолога в процессе сведётся к минимуму: нейросети будут предсказывать запросы на основе данных о поведении пользователя, сканировать рынок и выдавать наиболее подходящие предложения к тому моменту, как только человек задумается о покупке.

Ecommerce

Ecommerce будет внедрён повсеместно. Уже не потребуется переходить в интернет-магазин по ссылке: вы сможете купить всё там, где видите, в один клик. Например, читаете вы эту статью через несколько лет. Очень вам нравится помада на скрине из приложения MakeUp Plus (см. выше). Вы кликаете на неё и попадаете сразу в корзину. Или смотрите видео про последнюю модель Hololens (очки смешанной реальности) и тут же оформляете заказ прямо из YouTube.

Едва ли не в каждой области будут цениться специалисты со знанием или хотя бы пониманием устройства нейросетей, машинного обучения и систем искусственного интеллекта. Мы будем существовать с роботами бок о бок. И чем больше мы о них знаем, тем спокойнее нам будет жить.

P. S. Зинаида Фолс - нейронная сеть Яндекса, пишущая стихи. Оцените произведение, которое машина написала, обучившись на Маяковском (орфография и пунктуация сохранены):

« Это »

это
всего навсего
что-то
в будущем
и мощь
у того человека
есть на свете все или нет
это кровьа вокруг
по рукам
жиреет
слава у
земли
с треском в клюве

Впечатляет, правда?

Похожие статьи