Рекуррентные нейросети. Прогнозирование при помощи рекуррентных нейронных сетей

25.04.2019

К одному из сложных видов искусственных нейронных сетей (ИНС) относятся рекуррентные, в которых имеются обратные связи. В первых рекуррентных ИНС главной идеей было обучение своему выходному сигналу на предыдущем шаге. Рекуррентные сети реализуют нелинейные модели, которые могут быть применены для оптимального управления процессами, изменяющимися во времени, то есть обратные связи позволяют обеспечить адаптивное запоминание прошлых временных событий. Обобщение рекуррентных ИНС позволит создать более гибкий инструмент для построения нелинейных моделей. Рассмотрим некоторые архитектуры рекуррентных ИНС.

В основе сети Джордана лежит многослойный персептрон. Обратная связь реализуется через подачу на входной слой не только исходных данных, но и сигналов выхода сети с задержкой на один или несколько тактов, что позволяет учесть предысторию наблюдаемых процессов и накопить информацию для выработки правильной стратегии управления .

Сеть Элмана так же, как и сеть Джордана получается из многослойного персептрона введением обратных связей. Только сигналы на входной слой идут не от выходов сети, а от выходов нейронов скрытого слоя . Пример архитектуры сети Элмана показан на рис. 1. Выходы скрытого слоя { c 1 , c 2 ,…, c k } подаются с временной задержкой на входные нейроны с весовыми коэффициентам { w ij } -1 , где i (i = 1,2,…, n ) , j j = 1,2…, k ).

Рис. 1. Пример архитектуры сети Элмана

Для обобщения рекуррентных ИНС в статье предлагается добавить задержку сигналов обратной связи скрытого слоя на нескольких тактов. Для этого добавим у слоя динамическую стековую память. Пример архитектуры такой ИНС показан на рис. 2.

Рис. 2. Пример архитектуры рекуррентной ИНС с динамической стековой памятью нескольких предыдущих выходных сигналов скрытого слоя

Выходы скрытого слоя { c 1 , c 2 ,…, c k } подаются на входные нейроны с весовыми коэффициентам { w ij } - t , где i – индекс нейрона, на который подается сигнал (i = 1,2,…, n ) , j – индекс выходного сигнала нейрона скрытого слоя (j = 1,2…, k ) , t – индекс временной задержки (t =1,2… m ). Количество временных задержек будем изменять от 1 до m . Таким образом, сеть Элмана получается при m =1, а многослойный персептрон – при m =0.

При детальном рассмотрении архитектуры рекуррентной сети видно, что обратные связи от скрытого слоя или от выхода сети можно исключить путем добавления в обучающую выборку сигналов обратной связи.

Рассмотрим процесс трансформации обучающей выборки для решения задачи прогнозирования временного ряда с помощью рекуррентной ИНС с динамической стековой памятью. В качестве примера будем использовать среднемесячные значения плотности потока солнечного излучения на длине волны 10,7 за 2010-2012 года (табл. 1) .

Таблица 1. Данные о плотности потока солнечного излучения на длине волны 10,7 см. за 2010-2012 гг

№ примера Дата Плотность потока излучения 10 -22 [Вт/м 2 ]
1 Январь 2010 834,84
2 Февраль 2010 847,86
3 Март 2010 833,55
4 Апрель 2010 759,67
5 Май 2010 738,71
6 Июнь 2010 725,67
7 Июль 2010 799,03
8 Август 2010 797,10
9 Сентябрь 2010 811,67
10 Октябрь 2010 816,77
11 Ноябрь 2010 824,67
12 Декабрь 2010 843,23
13 Январь 2011 837,42
14 Февраль 2011 945,71
15 Март 2011 1153,87
16 Апрель 2011 1130,67
17 Май 2011 959,68
18 Июнь 2011 959,33
19 Июль 2011 942,58
20 Август 2011 1017,74
21 Сентябрь 2011 1345,00
22 Октябрь 2011 1372,90
23 Ноябрь 2011 1531,67
24 Декабрь 2011 1413,55
25 Январь 2012 1330,00
26 Февраль 2012 1067,93
27 Март 2012 1151,29
28 Апрель 2012 1131,67
29 Май 2012 1215,48
30 Июнь 2012 1204,00

Трансформируем временной ряд методом скользящих окон , как показано в таблице 2.

Таблица 2. Обучающая выборка ИНС для решения задачи прогнозирования, полученная в результате преобразования временного ряда методом окон

№ примера Входы ИНС (x ) Выходы ИНС (y )
x 1 x 2 x 3 y 1
1 834,84 847,86 833,55 759,67
2 847,86 833,55 759,67 738,71
3 833,55 759,67 738,71 725,67

Пусть в рекуррентной ИНС скрытый слой содержит три нейрона, выходной – один нейрон, стек динамической памяти – обратные сигналы скрытого слоя с задержкой на два такта (рис. 3).

Рис. 3. Рекуррентная ИНС с памятью двух предыдущих выходных сигналов скрытого слоя

Так как число нейронов скрытого слоя, имеющих обратную связь с входным слоем, равно трем, то размер входного вектора во время обучения ИНС при запоминании предыдущего выходного сигнала на один шаг назад увеличится на три, при запоминании двух предыдущих выходных сигналов – на шесть. Обозначим входные сигналы обучающей выборки, не изменяющиеся во время трансформации, как {x 1 , x 2 , x 3 }, а сигналы обратной связи – {x 4 , x 5 , x 6 , x 7 , x 8 , x 9 }. В таблице 3 приведена трансформированная обучающая выборка.

Таблица 3. Добавление в обучающую выборку рекуррентной ИНС выходных сигналов скрытого слоя

№ п/п Входы ИНС (x ) Выходы ИНС (y )
x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 y 1
1 834,84 847,86 833,55 0 0 0 0 0 0 759,67
2 847,86 833,55 759,67 c 1 -1 c 2 -1 c 3 -1 0 0 0 738,71
3 833,55 759,67 738,71 c 1 -1 c 2 -1 c 3 -1 c 1 - 2 c 2 - 2 c 3 - 2 725,67

На входы {x 4 , x 5 , x 6 } подаются выходные сигналы скрытого слоя с задержкой на один такт {с 1 -1 , c 2 -1 , c 3 -1 }, на входы {x 7 , x 8 , x 9 } – выходные сигналы скрытого слоя с задержкой на два такта {с 1 -2 , c 2 -2 , c 3 -2 }.

Таким образом, обучение рекуррентной ИНС с динамической стековой памятью методом обратного распространения ошибки можно свести к обучению многослойного персептрона, трансформируя обучающую выборку. Для реализации предлагаемой методологии обучения рекуррентной ИНС с динамической стековой памятью расширены возможности нейроэмулятора NeuroNADS .

Объектно-ориентированная модель рекуррентной ИНС с динамической стековой памятью представлена на диаграмме классов (рис. 4).

Рис. 4. Диаграмма основных классов, реализующих рекуррентную ИНС с динамической стековой памятью

В отличие от класса Layer , который является контейнером для нейронов многослойного персептрона, класс LayerMemory cодержит память stackOut , реализованную в виде стека предыдущих сигналов слоя. Размер стека задается с помощью свойства stackSize . На схеме (рис. 5) память слоя изображена в виде стека выходных сигналов слоя {y -1 , y -2 , …, y - n }, где n – размер стека. Каждая ячейка стека y - i состоит из массива выходов нейронов слоя {y 1, y 2, …, y n }. Стек организован так, что после переполнения памяти последняя ячейка y - n удаляется, вся очередь сдвигается на одну позицию, так что y - i = y -( i -1) .

Рис. 5. Реализация слоя с памятью (LayerMemory ) для рекуррентных ИНС с динамической стековой памятью

Проведем прогноз среднемесячной плотности солнечной активности на длине волны 10,7 см на первые шесть месяцев 2012 года на основе данных за 2010-2011 года из табл. 1. Для этого построим и обучим рекуррентную ИНС с динамической стековой памятью (рис.3) с помощью нейроэмулятора NeuroNADS . Первые 24 примера временного ряда возьмем для обучающей выборки, а оставшиеся шесть примеров – для тестовой выборки.

Обучение проведем гибридным алгоритмом . Параметры алгоритма: шаг обучения – 0,3, максимальное количество особей в поколении – 10, коэффициент мутации – 0,1. Критерии остановки обучения: среднеквадратическая ошибка – 0,001, количество эпох – 1000.

Один из лучших результатов обучения ИНС представлен на рис. 6 и на рис. 7. Показатели ошибок прогнозирования временного ряда представлены в табл. 4.

синий график исходного временного ряда;
красный график выходных значений сети на обучающей выборке;
зеленый график предсказанных значений сети.

Рис. 6. Результаты опроса рекуррентной ИНС с динамической стековой памятью на обучающей и тестовой выборках (по оси абсцисс – номер примера, по оси ординат – значение временного ряда)

Рис. 7. График изменения функции среднеквадратической ошибки рекуррентной ИНС с динамической стековой памятью во время обучения (по оси абсцисс – количество эпох, по оси ординат – значение ошибки)

Таблица 4. Показатели ошибок прогнозирования временного ряда

По результатам обучения можно сделать вывод, что рекуррентная ИНС с динамической стековой памятью справилась с задачей, показатели ошибок прогнозирования временного ряда соответствуют допустимым значениям. Таким образом, рекуррентные ИНС с динамической стековой памятью можно обучать с помощью предложенной методологии, а построенные модели ИНС использовать для прогнозирования временных рядов.

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 14-01-00579 а.

Список литературы:

  1. Бодянский Е.В., Руденко О.Г. Искусственные нейронные сети: архитектуры, обучение, применения. – Харьков: ТЕЛЕТЕХ, 2004. – 369 с.
  2. Осовский С. Нейронные сети для обработки информации / Пер. с польского И.Д. Рудинского. – М.: Финансы и статистика, 2002. – 344 с.
  3. Информационно-аналитическая система [Электронный ресурс]: данные о солнечной и геомагнитной активности – Режим доступа: http://moveinfo.ru/data/sun/select (доступ свободный) – Загл. с экрана. – Яз. рус.
  4. Круг П.Г. Нейронные сети и нейрокомпьютеры. М.: Издательство МЭИ, 2002 г. – 176 с.
  5. Нейроэмулятор NeuroNADS [Электронный ресурс]: веб-сервис - Режим доступа: http://www.service.. с экрана. – Яз. рус.
  6. Белявский Г.И., Пучков Е.В., Лила В.Б. Алгоритм и программная реализация гибридного метода обучения искусственных нейронных сетей // Программные продукты и системы. Тверь, 2012. №4. С. 96 - 100.

Рекуррентными нейронными сетями называются такие сети, в ко­торых выходы нейронных элементов последующих слоев имеют синаптические соединения с нейронами предшествующих слоев. Это приво­дит к возможности учета результатов преобразования нейронной сетью информации на предыдущем этапе для обработки входного вектора на следующем этапе функционирования сети. Рекуррентные сети могут использоваться для решения задач прогнозирования и управления.

Архитектура рекуррентных сетей

Существуют различные варианты архитектур рекуррентных ней­ронных сетей.

Сеть Джордана: В 1986 г. Джордан (Jordan) предложил рекур­рентную сеть (рис. 6), в которой выходы нейронных элементов по­следнего слоя соединены посредством специальных входных нейронов с нейронами промежуточного слоя. Такие входные нейронные эле­менты называются контекстными нейронами (context units). Они рас­пределяют выходные данные нейронной сети на нейронные элементы промежуточного слоя.

Рис. 6 Архитектура рекуррентной ней­ронной сети с обратными связями от нейро­нов выходного слоя

Число контекстных нейронов равняется числу выходных ней­ронных элементов рекуррентной сети. В качестве выходного слоя та­ких сетей используются нейронные элементы с линейной функцией активации. Тогда выходное значение j -го нейронного элемента последнего слоя определяется по формуле

где v ij - весовой коэффи­циент между i -м нейроном промежуточного и j -м ней­роном выходного слоев; P i (t )- выходное значение i -го нейрона промежуточ­ного слоя; t j - пороговое значение j -го нейрона вы­ходного слоя. Взвешенная сумма i -гo нейронного элемента промежуточного слоя определяется следующим образом:

где w ij - весовой коэффициент между j -м нейроном входного и i -м нейроном промежуточного слоев; р - число нейронов выходного слоя; w ki - весовой коэффициент между k -м контекстным нейроном и i -м нейроном промежуточного слоя; T - пороговое значение i -го нейрона промежуточного слоя; n - размерность входно­го вектора.



Тогда выходное значение i -го нейрона скрытого слоя

В качестве функции не­линейного преобразования F обычно используется гипер­болический тангенс или сигмоидная функция.

Для обучения рекуррентных нейронных сетей применяется алго­ритм обратного распространения ошибки.

Алгоритм обучения рекуррентной нейронной сети в общем слу­чае состоит из следующих шагов:

1. В начальный момент времени t = 1 все контекстные нейроны устанавливаются в нулевое состояние - выходные значения прирав­ниваются нулю.

2. Входной образ подается на сеть и происходит прямое распро­странение его в нейронной сети.

3. В соответствии с алгоритмом обратного распространения ошибки модифицируются весовые коэффициенты и пороговые значе­ния нейронных элементов.

4. Устанавливается t = t +1 и осуществляется переход к шагу 2. Обучение рекуррентной сети производится до тех пор, пока сум­марная среднеквадратичная ошибка сети не станет меньше заданной.

Человек не начинает каждый момент свое мышление с нуля. В то время, как вы читаете эту статью, вы воспринимаете каждое слово, основываясь на понимании значения предыдущих слов. Вы не забываете все и не начинаете анализировать каждое слово в отдельности. В целом, все ваши мысли имеют последствия (откладываются в памяти).

Традиционные нейронные сети не могут запоминать информацию, и это, вероятно, является их главным недостатком. Например, представьте, что вы хотите классифицировать события происходящее в каждом кадре фильма. Непонятно, как классическая нейронная сеть может использовать предыдущие свои выводы для дальнейших решений.

Рекуррентные сети направлены на исправление этого недостатка: они содержат циклы, которые позволяют сохранять информацию.

На рисунке выше, элемент нейронной сети A получает на вход некоторый вход x и возвращает значение h . Цикл позволяет информации передаваться к следующим шагам.

Из-за циклов рекуррентные нейронные сети становятся трудными в понимании. Однако, все не так сложно: они имеют много общего с обыкновенными сетями. Рекуррентную сеть можно развернуть в последовательность одинаковых обыкновенных нейронных сетей, передающих информацию к последующим, например, как изображено на рисунке ниже.

Эта цепочка показывает, что природа рекуррентных нейронных сетей тесно связана с последовательностями и списками. Они являются естественными архитектурами для использования таких данных.

И, естественно, они используются. За последние несколько лет был достигнут значительный успех в применении рекуррентных нейронных сетей для распознавания речи, моделирования языка, перевода, распознавания изображений и других интересных вещей. Оставим размышления о способах применения рекуррентных сетей для Андрея Карпатого в его блоге: The Unreasonable Effectiveness of Recurrent Neural Networks .

Существенное влияние на успех оказало появление LSTM сетей - очень специфического типа рекуррентных нейронных сетей, которые работают для большого количества задач значительно лучше, чем обыкновенные сети. Практически все выдающиеся результаты, достигнутые с помощью рекуррентных нейронных сетей основаны на них. В статье будут рассмотрены именно LSTM сети.

Проблема долгосрочных зависимостей

Одной из основных идей рекуррентных сетей является возможность использовать в текущей задаче информацию полученную ранее. Например использовать предыдущие кадры видео для анализа текущего кадра. Однако, умеют ли это делать рекуррентные сети? - И да, и нет.

Иногда необходимо лишь взглянуть на предыдущие данные для решения текущей задачи. Например, лингвистическая модель пытается предсказать последующие слова, основываясь на предыдущих словах. Если вы хотите предсказать последнее слово во фразе «Облака в небе «, вам не нужен какой-либо другой контекст, так как довольно очевидно, что следующее слово будет «небо «. В таких задачах, когда разрыв между необходимыми данными и текущей задачей достаточно невелик, рекуррентные нейронные сети, как правило, могут справиться с задачей.

Однако, иногда для решения задачи необходимо больше контекста. Например, для предсказания последнего слова во фразе «Я вырос во Франции. … Я свободно говорю по-Французски » непосредственно стоящие перед искомым словом слова говорят лишь о том, что следующее слово, наверняка, будет языком, но для его определения необходим более ранний контекст. Вполне вероятно, что разрыв между необходимым контекстом и искомым словом будет весьма велик.

К сожалению, когда этот разрыв растет рекуррентная нейронная сеть теряет способность использовать эту информацию.

Теоретически рекуррентные нейронные сети в состоянии обрабатывать такие долгосрочные зависимости (а человек может тщательно выбирать параметры для сети). Однако, на практике рекуррентные нейронные сети не в состоянии обучиться в таких задачах. Проблема была изучена специалистами Хохрайтером (1991) [Германия] и Бенджио и др.(1994) , которые определили фундаментальные причины сложности этой задачи.

Однако, LSTM сети не имеют такой проблемы.

LSTM сети

Долгая краткосрочная память (Long short-term memory), обычно называемая LSTM-сетями - это особый вид рекуррентных нейронных сетей, способных к запоминанию долговременных зависимостей. Они были введены Сеппом Хохрайтером и Юргеном Шмидхубером в 1997 году и были использованы и развиты многими исследователями в своих работах. Эти сети работают в широком спектре задач и довольно часто используются.

LSTM сети были разработаны для решения проблемы долговременных зависимостей. Запоминание информации на продолжительный срок - это одна из основных особенностей этих сетей, не требующая продолжительного обучения.

Все рекуррентные сети можно представить в форме цепочки повторяющихся обыкновенных нейронных сетей. Обычную рекуррентную нейронную сеть можно представить в очень простой форме, как слой с tanh функцией активации.

LSTM-сети также можно представить в такой форме, однако повторяющиеся модули имеют значительно более сложную структуру: вместо однослойной нейронной сети они имеют четырехслойную, организованную очень специфическим образом.

Повторяющиеся модули в LSTM-сети, содержащие 4 слоя

Однако не беспокойтесь об этих тонкостях: мы рассмотрим пошагово происходящее в этой сети чуть позже, а сейчас договоримся об используемых условных обозначениях.

В приведенной выше диаграмме, каждая линия обозначает вектор передающий данные с выхода одного узла на вход другого. Розовый круг обозначает поэлементные операции, такие как сложение векторов. Желтые прямоугольники обозначают обучаемые нейросетевые слои. Соединяющимися линиями обозначена конкатенация, а разделяющимися - копирование.

Базовая идея LSTM-сетей

Ключ к пониманию LSTM-сети - это состояние ячейки, горизонтальная линия, проходящая через верхнюю часть диаграммы.

Состояние ячейки напоминает конвейерную ленту: оно проходит сквозь всю цепочку лишь с некоторыми незначительными линейными взаимодействиями. Для информации это означает, что она может проходить практически без изменений.

Способность сети добавлять или удалять информацию в ячейке, тщательно регулируется структурами, называющимися вентилями.

Вентили - это способ ограничения прохождения информации. Они состоят из нейронного слоя с сигмовидной функцией активации и выполняют операцию поэлементного умножения.

Выход сигмоиды - это число от 0 до 1, обозначающее какая часть каждого элемента вектора будет пропущена далее. Значение 0 можно понимать, как «ничего не пропускать», в то время как значение 1 - «пропустить полностью»

LSTM имеют три таких элемента для защиты и контроля состояния ячейки.

Пошаговый анализ работы LSTM-сети

Первый шаг в LSTM сети - это решение, какую информацию необходимо выбросить из состояния ячейки. Решение формируется сигмовидным слоем называемым входным вентилем. Он обозначен, как \(h_{t-1}\) и \(x_{t}\) и имеют числовой выход со значением между 0 и 1 для каждой ячейки состояния \(C_{t-1}\). 1 обозначает «полностью сохранить», 0 - «полностью избавиться».

Вернемся к примеру лингвистической модели предсказания слова, основываясь на предыдущих словах. В подобной задаче ячейки могут содержать пол рассматриваемого объекта для использования верного местоимения. Однако, когда мы видим новую тему, можно забыть пол старого объекта.

Следующим шагом необходимо определить, какая информация будет храниться в состоянии ячейки. Этот этап состоит из двух частей. Первая: входной вентиль должен определить какие значения будут обновляться, а tanh слой создает вектор новых кандидатов на значения \(\tilde C_t\), которые могут быть добавлены в состояние. На следующем шаге мы комбинируем два созданных вектора для обновления состояния.

В примере с языковой моделью, мы хотим добавить пол нового объекта в состояние ячейки для замены устаревшего.

Для реализации этого умножаем прошлое состояние на \(f_{t}\) для «забывания» данных признанных ненужными на прошлом шаге. Затем добавляется \(i_t * \tilde C_t\). Это новые значения значений, выбранные ранее для запоминания.

В случае с лингвистической моделью мы забываем информацию о старом субъекте и запоминаем новую информацию, определенную на прошлом шаге.

Наконец, мы должны решить, что будет на выходе ячейки. Этот выход формируется на базе состояния ячейки, но является его фильтрованной версией. Сначала запускается сигмоидный слой, определяющий какая часть состояния ячейки будет передана на выход. После чего состояние ячейки подается на функцию tanh (выходные значения между -1 и 1) и умножается на выход сигмовидного вентиля, определяющего частичность выхода состояния.

В примере с лингвистической моделью, это может быть предмет, увиденный сетью и требующийся для вывода информации, имеющей отношение к глаголу. Например, определение множественного или единственного числа субъекта для определения формы глагола следующего далее.

Вариации LSTM-сетей

Выше мы рассмотрели классические LSTM-сети, однако существует множество их вариаций. На самом деле, фактически в каждом исследовании, с использованием LSTM-сетей используется не совсем классическая модель. Различия, как правило, незначительны, но стоит отметить основные.

Один из популярных варианты LSTM-сетей, введенный Gers & Schmidhuber (2000) добавляет «Глазки», что определяет возможность вентилям наблюдать за состоянием ячейки.

На диаграмме выше «глазки» добавлены для всех вентилей, однако во многих статьях «глазки» используются не для всех, а только для некоторых вентилей.

Другим вариантом является комбинирование вентилей «забывания» и входных вентилей. Тогда вместо того, чтобы по отдельность решать какую информацию забывать, а какую запоминать эти операции производятся совместно, и тогда забывание информации производится только с замещением.

Чуть более серьезное изменение LSTM-сетей - Рекуррентный модуль с затворами (Gated Recurrent Unit) или GRU, введенные Cho, и др. (2014) . Этот подход комбинирует вентили «забывания» и входные вентили в единый вентиль обновления. Кроме того объединяется состояние и скрытое состояние ячейки и содержит некоторые другие менее значительные изменения. Полученная модель является более простой, чем классическая LSTM модель и становится все более популярной.

Это лишь некоторые вариации LSTM-модели. Существует множество других, таких как глубокие вентильные рекуррентные нейронные сети (Depth Gated RNNs) Yao и др. (2015) . Кроме того предлагаются принципиально иные подходы, такие как часовые нейронные сети (Clockwork RNNs) предложенные Koutnik и др. (2014) .

Какой из этих вариантов лучше? Имеются ли различия? Greff и др (2015) делая неплохое сравнение популярных вариантов, приходят к выводу о том, что они примерно одинаковы. Jozefowicz, и др. (2015) протестировав более 10 тысяч архитектур рекуррентных нейронных сетей, говорят о том, что некоторые из них работали лучше чем LSTM в специализированных задачах.

Заключение

Ранее говорилось о том, что достигнуты выдающиеся результаты с рекуррентными нейронными сетям. Значительная часть с использованием LSTM-сетей. Эти сети, действительно, работают лучше других известных во многих задачах.

Будучи записанными как набор уравнений LSTM-сети выглядят весьма пугающе, будем надеяться, что после прочтения статьи читатель стал лучше понимать особенности этой архитектуры.

LSTM-сети были большим прогрессом в рекуррентных нейронный сетях. И естественно задаваться вопросом о том, каким будет следующих скачек в исследовании рекуррентных нейронных сетей.

Рекуррентные нейронные сети

Рекуррентные нейронные сети - это наиболее сложный вид нейронных сетей, в которых имеется обратная связь. При этом под обратной связью подразумевается связь от логически более удалённого элемента к менее удалённому. Наличие обратных связей позволяет запоминать и воспроизводить целые последовательности реакций на один стимул. С точки зрения программирования в таких сетях появляется аналог циклического выполнения, а с точки зрения систем - такая сеть эквивалентна конечному автомату. Такие особенности потенциально предоставляют множество возможностей для моделирования биологических нейронных сетей. Но, к сожалению, большинство возможностей на данный момент плохо изучены в связи с возможностью построения разнообразных архитектур и сложностью их анализа.

Перцептроны Розенблатта с обратной связью

Первые идеи о нейронных сетях с обратными связями описал Ф.Розенблатт в заключение своей книги о перцептронах в 1962 году. Ф.Розенблатт дал качественное описание нескольких видов перцептронов с обратной связью . Первая группа таких перцептронов была предназначена для вырабатывания избирательного внимания, а вторая группа для обучения последовательности реакций.

Однослойные сети с обратной связью

После выхода книги Минского с критикой возможностей элементарного перцептрона в 1969 году работы по изучению искуственных нейронных сетей практически прекратились. Только небольшие группы продолжали исследования в этом направлении. Одна из таких групп в Массачусетском Технологическом институте в 1978 году начала свою работу. Джон Хопфилд был приглашен в качестве консультанта из отделения биофизики лаборатории Бела. Его идеи так же как и Розенблатта базировались на результатах исследования в нейрофизиологии. Главной заслугой Хопфилда является энергетическая интерпретация работы искуственной нейронной сети. Что же касается самой нейронной сети Хопфилда , то она обладает рядом недостатков из-за которых она не может быть использована практически. Впоследствии Коско развил идеи Хопфилда и разработал модель гетероассоциативной памяти - нейронная сеть Коско . Основным недостатком этих сетей является отсутствие устойчивости, а в случаях когда она достигается сеть становится эквивалентной однослойной нейронной сети из-за чего она не в состоянии решать линейно неразделимые задачи. В итоге емкость таких сетей крайне мала. Несмотря на эти практические недостатки в области распознавания, данная сеть успешно применялась в исследованиях энергетического хаоса, возникновения аттракторов, а так же с этого времени о искуственных нейронных сетей стало возможным говорить как о ассоциативной памяти .

Рекуррентные сети с единичной задержкой

См. также

Литература

  • Розенблатт, Ф. Принципы нейродинамики: Перцептроны и теория механизмов мозга = Principles of Neurodynamic: Perceptrons and the Theory of Brain Mechanisms. - М.: Мир, 1965. - 480 с.
  • J. J. Hopfield [PNAS Reprint (Abstract) PNAS Reprint (PDF) Neural networks and physical systems with emergent collective computational abilities.] // Proceedings of National Academy of Sciences . - April 1982. - С. vol. 79 no. 8 pp. 2554-2558.
  • Jordan, M. I. Serial order: A parallel distributed processing approach. // Institute for Cognitive Science Report 8604 . - University of California, San Diego: 1986.
  • Elman, J.L. Finding structure in time. // Cognitive Science . - 1990. - С. 179-211.

Wikimedia Foundation . 2010 .

Смотреть что такое "Рекуррентные нейронные сети" в других словарях:

    Запрос «Нейронная сеть» перенаправляется сюда. Cм. также другие значения. Схема простой нейросети. Зелёным обозначены входные элементы, жёлтым выходной элемент Искусственные нейронные сети (ИНС) математические модели, а также их программные или… … Википедия

    Запрос «Нейронная сеть» перенаправляется сюда. Cм. также другие значения. Схема простой нейросети. Зелёным обозначены входные элементы, жёлтым выходной элемент Искусственные нейронные сети (ИНС) математические модели, а также их программные или… … Википедия

    Запрос «Нейронная сеть» перенаправляется сюда. Cм. также другие значения. Схема простой нейросети. Зелёным обозначены входные элементы, жёлтым выходной элемент Искусственные нейронные сети (ИНС) математические модели, а также их программные или… … Википедия

    У этого термина существуют и другие значения, см. Нейронная сеть (значения). Схема простой нейросети. Зелёным цветом обозначены входные нейроны, голубым скрытые нейроны, жёлтым выходной нейрон … Википедия

    Для улучшения этой статьи желательно?: Добавить иллюстрации. Рекуррентные нейронные сети (англ. … Википедия

    Нейронная сеть Хопфилда полносвязная нейронная сеть с симметричной матрицей связей. В процессе работы динамика таких сетей сходится (конвергирует) к одному из положений равновесия. Эти положения равновесия являются локальными минимумами… … Википедия

    Эту статью следует викифицировать. Пожалуйста, оформите её согласно правилам оформления статей. Человеческая память ассоциативна, то есть некоторое воспоминание может порождать большую связанную с ним область. Один предмет напоминает нам … Википедия

    Архитектура нейронной сети Коско Нейронная сеть Коско (Двунаправленная ассоциативная память ДАП) нейронная сеть, разработанная Бартом Коско. Это однослойная нейронная сеть с обратными связями, базируется на двух идеях: адаптивной… … Википедия

    Логическая схема перцептрона с тремя выходами Основная статья: Перцептрон Перцептрон является одной из первых моделей искусстве … Википедия

Книги

  • Прикладное машинное обучение с помощью Scikit-Learn и TensorFlow. Концепции, инструменты и техники , Жерон Орельен. Прикладное машинное обучение с помощью Scikit-Learn и TensorFlow. Концепции, инструменты и техники для создания интеллектуальных систем. Полноцветное издание. "Эта книга - замечательное…
Похожие статьи