Пикселей 169 5 ppi емкостный. Важна ли высокая плотность пикселей на дисплее смартфона? Требуемые исходники, пример Chrome

19.04.2019

Все современные дисплеи которые производятся сегодня, состоят из цветных пикселей, и чем они мельче тем четче получаемая картинка при одинаковых размерах дисплея. Плотность пикселей как правило измеряется в PPI - что расшифровывается как pixel per inch. Чем больше данное значение в характеристиках дисплея, тем детальнее выводимая картинка.

Так же, часто PPI имеется виду и DPI что означает dots per inch (точек на дюйм), но данный термин применяется в бумажной печати. Как правило, в бумажной печати используется стандартное разрешение в 300 DPI, которого достаточно для качественной картинки, еще иногда используется и разрешение 266 DPI, которое сохраняет оптимальную четкость изображения. Чаще всего в разрешении 300 DPI печатаются в глянцевых журналах, книгах, или в постерах. При такой , большинство людей никогда не увидят отдельных точек, разве что если рассматривать лупой. Газеты как правило используют разрешение значительно ниже, примерно 170 DPI.

Не смотря на то что эта цифра почти в два раза ниже чем у глянцевых журналах, текст остается идеально читабельным. Некоторые газеты используют даже 10-20 точек на дюйм, и текст все равно остается хорошо читаемым.Смартфоны, планшеты и дисплеи компьютеров как правило находятся на схожем расстоянии что и газета или журнал, и плотность в радиусе 150 - 300 является самым оптимальным. Нужно знать еще тот факт, что в устройствах размер экрана влияет на плотность пикселей, таким образом при одинаковом разрешении в 768 на 1280 пикселей 4.5 дюймовый дисплей будет иметь 332 точек на дюйм, а 10 дюймовый дисплей всего 150 точек, но по аналогии с газетой, он остается отлично читаемым для человеческого глаза.

Сначала стоит задать себе вопрос, поможет ли высокая плотность пикселей быстрее печатать письма? Помогает ли она вам удобнее управлять календарем? или добавлять новые контакты? Если речь идет о 300 ppi, тогда можно сказать что да, хорошая читаемость помогает быстрее находить контент на экране, с меньшим напряжением глаз. Да это важно, но это не имеет такое массовое значение.

Хорошая плотность пикселей делает просмотр фотографий приятнее, можно смотреть видео с более высоким разрешением, но это не на столько критично будь плотность всего на 150 точек. Фотографию при желании можно увеличить, а видео на небольшом экране смартфона можно закачать и в разрешении по ниже.

Может хорошая плотность сделает просмотр сайта приятнее? но с приходом мобильной эры, все сайты имеют и мобильную версию, где все элементы достаточно крупны, и не требуется высокая четкость дисплея

По опросам пользователей смартфонов, для большинства из них в смартфоне важнее совсем иные вещи, например качество картинки, есть ли функция беспроводной зарядки, какая емкость аккумулятора, или что за прошивка установлена в случае Anroid.

Очень высокая плотность пикселей экрана смартфона это как спидометр с высокой максимальной скоростью, до которой редко кто разгоняется.

Высокая плотность (350 и выше) имеет смысл для планшета - если вы имеете профессию связанную с графикой или фотографией, для смартфона же большой разницы нет. Разница конечно будет отличаться от дисплея с 500ppi по сравнению с 320, но она не будет настолько критична, из за чего будет невозможно нормально делать привычные операции.

10.09.2012

Apple никогда не пыталась быть в тренде. Она всегда эти тренды создавала, и за ней шли и покупатели и конкуренты. Одним интересным, с моей точки зрения, трендом пары последних лет стало значение ppi (Pixel Per Inch) – количество точек на дюйм дисплея. Показатель, информирующий о четкости изображения, превратился в манию.


Количество пикселей на дюйм действительно очень важный показатель, который говорит о том, насколько четким будет изображение на дисплее. Чем больше это значение, тем менее различимы будут пиксели невооруженным взглядом, и соответственно, тем менее заметны будут ступеньки на наклонных линиях изображения. В абсолюте – чем больше точек на дюйм, тем лучше. Хотя, беспредельно увеличивать плотность пикселей, уменьшая их размер, не удастся – технологические ограничения имеются, но до них еще очень далеко. Совсем другой вопрос – нужны ли нам дисплеи со столь высоким ppi?

Перед тем как делать выводы и оценивать перспективы, давайте вернемся в прошлое и посмотрим, какой плотностью пикселей обладали дисплеи прошлого. Тогда на этот параметр никто не обращал внимания, поэтому это вдвойне интересно.
Отбросим дисплеи с ЭЛТ, и начнем с первых ЖК. Типовым размером первых моделей были 15 дюймов, и разрешение 1024 на 768. Плотность в данном случае будет около 85 точек на дюйм. Затем появились 17 и 19 дюймовые модели с разрешением 1280 на 1024, у них ppi оказался равен 96 и 86 точкам. Редкие 22 дюймовые панели того времени радовали разрешением 1600 на 1200 и плотностью в 91 пиксель на дюйм.

Как видите, все диагонали обладали близкой плотностью, которая считалась достаточной. При этом, думаю никто не будет спорить, что пиксели в таких дисплеях видны, и "лесенки" на шрифтах очень даже различимы. Но это никого не волновало, кроме разработчиков видеокарт, которые в борьбе с пресловутыми лесенками в течение многих лет разрабатывали и улучшали технологии сглаживания, которые позволяли замаскировать этот эффект.


Современные домашние мониторы имеют чуть большую плотность пикселей – и все благодаря моде на Full HD. Например, 21.5 дюймовый монитор с разрешением 1920 на 1080 радует 102 ppi. А дисплей ноутбука ASUS при диагонали 11.1 дюйма и разрешении 1366 на 768 характеризует плотность в 141 пиксель на дюйм. Более или менее доступных по разумной цене решений в ряде мониторов для компьютеров или ноутбуков с большей плотностью пикселей найти, скорее всего, не удастся.

Все домашние решения лежат в пределах от 100 до 140 ppi. В телевизорах ситуация еще хуже. Например, плотность пикселей у 32 дюймового телевизора с разрешением Full HD составляет 69 точек на дюйм, у 40 дюймового с тем же разрешением всего 55 точек. А уж о больших диагоналях и говорить страшно. Например, 55 дюймовая панель порадует плотность в 40 ppi.

Зато телефоны и планшеты благодаря Apple стали лидерами в плотности пикселей. Первые iPhone, как и его конкуренты был не самым четким по сегодняшним меркам, обладая при диагонали в 3.5 дюйма разрешением 320 на 480 точек, и как результат плотностью в 165 точек на дюйм. Чуть позже, без особого шума появился первый смартфон Sony Ericsson Xperia X1, который обладал 3 дюймовым дисплеем с разрешением 480 на 800 пикселей, и соответственно плотностью 311 ppi. Но Sony не смогла правильно "подать" такую высокую четкость покупателю, а вот Apple идею подметила, подсуетилась, и выпустила iPhone 4 с дисплеем высокой четкости, который характеризуется разрешением 640 на 960 при диагонали 3,5 дюйма. 330 точек на дюйм этой модели телефона, под ярким маркетинговым названием Retina Display мгновенно завоевали любовь покупателей. Именно с этого момента всех стало интересовать значение ppi. Сама Apple на волне успеха подогнала под Retina и новое поколения iPad, разрешение дисплея которого составило 2048 на 1536 при диагонали в 9,7 дюйма. Его значение ppi равно 264 точки на дюйм, что хоть и меньше чем у iPhone текущего поколения, зато в два раза больше чем у iPad 2 и заметно больше чем у большинства конкурентов, дисплеи которых при схожих размерах диагонали имели разрешение не более 1280 на 800.


Впрочем, к чести конкурентов, они довольно быстро наверстали отставание, заметно увеличив разрешение дисплеев своих устройств. В частности Samsung Galaxy Nexus может похвастать разрешением 1280 на 720 своего 4.65 дюймового дисплея, плотность пикселей которого составляет 316 ppi. А дисплей планшета ASUS Transformer Pad Infinity имеет разрешение 1920 на 1200 при диагонали 10,1 дюйма, что дает 224 ppi. Но что самое интересное, на этом они не остановились…

Повальное увлечение уплотнением пикселей и созданием дисплеев с еще более высокими значениями PPI охватило практически всех производителей. Это уже даже не работа на улучшение характеристик, а соревнование. LG анонсирует 5 дюймовый дисплей с Full HD разрешением, и ppi а уровне 440 точек. Toshiba отвечает дисплеем с диагональю 6.1 дюйма, разрешением 2560 на 1600 точек, что соответствует плотности в 495 точек на дюйм. Ну а лидером пока является консорциум Japan Display, который недавно анонсировал 2.3 дюймовый дисплейчик с разрешением 1280 на 800 точек. Его плотность равна 651 ppi. Потрясающе! Но нужны ли дисплеи с такой высокой плотностью пикселей?


С одной стороны – хуже от этого дисплеи точно не становятся – ведь кашу маслом не испортишь. С другой стороны, у огромных разрешений небольших диагоналей есть недостатки. Главным недостатком из всех можно считать значительный рост нагрузки на графические карты. Для десктопных компьютеров это не очень критично – видеокарты с огромным энергопотреблением на этом рынке норма. Да и повышение разрешения позволит отказаться от тяжелого режима со сглаживанием, так как "лесенки" с которым он призван бороться станут практически незаметны. А вот для мобильных устройств значительное увеличение количества пикселей наносит сильнейший удар по времени автономной работы. Мало того, что видеокарта трудится в поте лица дабы отрисовать такое изображение, что требует значительных затрат энергии, так еще и сам дисплей при увеличении кол-ва пикселей становится более прожорливым. Так что здесь нужно соблюдать паритет между желаниями разработчика и возможностями.

Но дело не только в этом – зачем усложнять производство и делать более дорогие продукты, если высочайшая плотность пикселей просто не нужна в некоторых устройствах. Например, телевизор с диагональю 32 дюйма установленный на расстоянии более трех метров, не позволяет разглядеть разницы в четкости изображения при разрешениях HD и FullHD, при этом плотность пикселей в них разниться заметно – 49 ppi и 69 ppi, соответственно. Причина в том, что с такого расстояния, мы не можем разглядеть отдельных точек – наш глаз просто физически не может их различить. А если мы сделаем телевизор такой же диагонали с грядущим разрешением 4Kx2K? При разрешении 3840 на 2160 мы получим плотность в 138 ppi, которая находится на уровне современных дисплеев для ноутбуков и десктопных компьютеров. Работать с таких монитором с расстояния 70-100 сантиметров будет очень удобно, но с такого расстояния телевизор никто не смотрит! А человек сидящий в трех метрах от устройства вновь не увидит разницы телевизора с 4Kx2K и FullHD.


Вывод из этого достаточно прост – бессмысленное увеличение количества пикселей на дюйм совершенно не улучшит объективные ощущения от дисплеев. Здесь важен баланс – расстояние просмотра/плотность пикселей. За точку отсчета можно условно принять то соотношение что принято в типографском деле – 300 точек на дюйм. Такая плотность позволяет нам не замечать пикселизации на журнальных фото. Однако краска при нанесении на бумагу немного растекается, что улучшает восприятие. А потому оптимальной плотностью пикселей у дисплеев стоит принять 330 точек на дюйм. И это в том случае, если устройство вы располагаете на том же расстоянии, что и газету или журнал. Здесь стоит оговорится, что речь дальше пойдет не об минимально требуемых разрешениях и плотности, а наоборот, о тех что нужны для получения идеального изображения, схожего по четкости с той же фотографией отпечатанной в глянцевом журнале, ну или изображением на экране последнего iPhone.

То есть, 330 точек на дюйм – оптимум для смартфонов, планшетов, электронных книг. Это и возьмем за точку отсчета – расстояние просмотра – 50 сантиметров, и плотность 330 пикселей на дюйм. С таким подходом, оптимальным разрешением для 10.1-дюймового планшета будет 2800 на 1800 точек. Как видите, iPad пока не дотягивает слегка. Зато среди смартфонов такое решение уже есть – iPhone 4 и 4S, их плотность как раз составляет 330 точек на дюйм.


Мониторам и телевизорам такая плотность уже не нужна, в силу того, что их просмотр проводится с большего расстояния. После несложных вычислений, получаем оптимальный результат для домашних мониторов, которые в среднем находятся на расстоянии одного метра. Учитывая, что при удвоении расстояния просмотра требуется в два раза меньшая плотность – оптимальным ppi для них станет 165 точек на дюйм. То есть разрешение 4Kx2K (которое составляет 3840 на 2160 точек) будет оптимальным для 27-дюймовых мониторов. А привычное в наше время FullHD оптимально смотрится только на 13.3-дюймовых дисплеях. Ну а разрешение 2800 на 1800 точек будет в самый раз 20-дюймовым мониторам.

Что касается телевизоров, то здесь стоит учитывать, что их просмотр проводится с расстояния от 2.5 метров – это в пять раз больше чем при использовании смартфонов и планшетов, как следствие – плотность пикселей там может быть в пять раз ниже, при сохранении той же четкости изображения. То есть, этим устройствам вполне хватит плотности в 66 точек на дюйм. Теперь высчитываем идеальные соотношения разрешений и диагоналей. Унылые 1366 на 768 точек будут вполне прилично смотреться только на 23-дюймовых дисплеях. Современное FullHD будет радовать кристальной четкостью на телевизорах с диагональю 32 дюйма. Такой же четкости, но при разрешении 4Kx2K, можно добиться уже на дисплеях с диагональю до 65 дюймов!

В индустрии высоких технологий вовсю набирает обороты новая забава – разместить как можно больше пикселей на единицу площади экрана. А то мы уж было соскучились по технологическим соревнованиям, после того как ушли в прошлое гонки за мегагерцами и мегапикселями.

Развязала новую гонку, как это принято в последнее десятилетие, компания Apple. Первый смартфон iPhone 4 с экраном повышенной чёткости представил в июне 2010 года ещё сам Стив Джобс. Это был довольно небольшой по нынешним меркам 3,5-дюймовый дисплей, получивший при этом аппаратное разрешение 960х640 точек. Ширина одного пикселя на таком экране составила всего 78 мкм, а плотность точек – 326 пикселей на дюйм (128 пикселей на см). Для сравнения: плотность пикселей в экране обычного смартфона – около 160 ppi, а в компьютерных мониторах и вовсе меньше сотни.

Новый экран был торжественно назван Retina display – от английского слова, означающего «сетчатка глаза», чему было дано красивое объяснение: некие исследования показали, что человек не способен различить невооружённым глазом отдельные точки при плотности выше 300 ppi на расстоянии 10-12 дюймов, то есть примерно 25-30 см. На таком расстоянии от глаз обычно держат мобильные телефоны, поэтому было выбрано именно это значение, чуть больше 300 ppi.

Разумеется, сразу же нашлись желающие оспорить результаты этих анонимных исследований. Так, известный американский популяризатор науки и астроном Филипп Плейт заявил, что если у вас острое зрение, то вы легко различите отдельные пиксели на таком экране и с 30 см, но при этом для обычного человека эти точки заметны не будут.

Между тем эксперт по качеству изображения и президент компании DisplayMate Technolоgies Реймонд Сонейра заметил, что реальное разрешение Retina display значительно ниже разрешающей способности сетчатки глаза. Дело в том, что разрешение в значительной степени зависит от того, под каким углом мы смотрим на объект. Для человека с идеальным зрением разрешающая способность глаза составляет около 0,6 угловой минуты, то есть 0,01 градуса. Это означает, что два отдельных объекта, находящиеся на расстоянии более 5730 футов, или 1,75 км, будут восприниматься как одна точка. Исходя из этого, Сонейра заключил, что если мы смотрим на смартфон на расстоянии 30 см, то разрешающая способность нашего глаза достигает 477 ppi, а если приближаем до 20 см, то и все 716 ppi. Чтобы получить 318 ppi, нужно отнести телефон на расстояние 45 см.

Сонейра не учёл одного: в реальности людей с идеальным зрением не так уж и много, и разрешающая способность сетчатки среднестатистического человека с нормальным зрением – порядка 1 угловой минуты. Сделав соответствующую поправку, мы и получим заветные 300 ppi – значение, которое можно вывести несложными подсчётами, а вовсе не какими-то мифическими исследованиями, о которых говорил Джобс.

Поскольку разрешающая способность глаз зависит от расстояния, на котором мы наблюдаем объект, чтобы добиться эффекта «безпиксельной» картинки в экранах разных устройств, требуется разная плотность точек. Поэтому 9,7-дюймовый Retina Display планшета iPad имеет меньшую плотность 264 ppi (105 пикселей на см), а 15- и 13-дюймовые экраны ноутбуков MacBook Pro – 220 ppi (87 пикселей на см) и 227 ppi (89 пикселей на см).

Джобс был прав в главном: для того чтобы перестать различать пиксели на экране самого близко подносимого к глазам гаджета – смартфона, достаточно плотности чуть большей, чем 300 ppi. Но курок уже был спущен, и масса компаний ввязалась в не имеющую даже теоретического смысла гонку за повышение плотности пикселей экрана. Главное – обогнать Apple, а есть в этом толк или нет, дело десятое.

В результате мы уже получили массу курьёзных изделий, при взгляде на которые не знаешь, плакать или смеяться. Японская Sharp одной из первых выпустила для внешних рынков смартфон с пятидюймовым экраном Full HD: при разрешении 1920х1080 плотность пикселей дисплея SH930W составляет 440 ppi. Аналогичный по характеристикам (а может, и попросту точно такой же) экран – у HTC J Butterfly. Цифры впечатляют, но, во-первых, малопонятно, зачем карманному устройству вообще разрешение Full HD на пятидюймовом экране, а во-вторых, портить глаза, вглядываясь в мельчайшие детали, можно и на менее высокотехнологичных устройствах.

Разрешение десятидюймового экрана нового планшета Google Nexus 10 ещё больше: 2560х1600 точек. То есть такое же, как у настольного монитора с диагональю 27-30 дюймов. Плотность точек при этом составляет 300 пикселей на дюйм. Означает ли это, что в Google предлагают смотреть в дисплей этого планшета с расстояния 25-30 дюймов? Вы когда-нибудь пробовали смотреть 50-дюймовый телевизор с полутора метров? Ощущения примерно те же.

Апогей безумия – прототип 9,6-дюймового экрана, разработанный японской компанией Ortus Technology. Его разрешение – 3840х2160 точек, что в точности соответствует перспективному телевизионному стандарту Ultra HD, или 4K, который предусматривает отображение в четыре раза больше точек, чем привычный Full HD. Плотность пикселей у этого экрана – 485 точек.

Избыточность уже стала самоцелью: никому не нужны экраны, пиксели на которых можно разглядеть только под микроскопом: они уже и так не видны – при традиционном использовании здоровыми вменяемыми людьми. Между тем экраны с повышенной плотностью пикселей сами по себе вызывают массу проблем, связанных как с аппаратной, так и с программной начинкой гаджетов, в которых они устанавливаются.

Прежде всего, экраны с повышенным разрешением и повышенной плотностью пикселей потребляют намного больше электроэнергии, чем такие же по размеру дисплеи меньшего разрешения. И это только при выводе статичной картинки! Поддержка сверхвысоких разрешений многократно ужесточает требования к графической подсистеме, да и в целом к вычислительным ресурсам устройства. А это означает не только гораздо более дорогую платформу, но и резкий рост энергопотребления. Современные смартфоны и с обычными-то экранами с трудом выдерживают без подзарядки рабочий день, а что будет, если их энергопотребление вырастет даже не в полтора раза, а хотя бы на десятки процентов?

Программная проблема напрямую связана с главным требованием к электронному устройству – удобством его использования. И если, как показывает практика, гаджеты под управлением Android без особого труда справляются с масштабированием пользовательского интерфейса и приложений под повышенное разрешение, то у техники на Windows, как ни странно, с этим возникают большие проблемы.

К примеру, у планшета Samsung Slate 7, оснащённого 11,6-дюймовым экраном с разрешением 1366х768 точек и довольно скромной плотностью пикселей 135 ppi, невозможно оптимальным образом настроить пользовательский интерфейс под управлением Windows 7: либо его элементы выглядят слишком мелкими, либо края окон скрываются за границами дисплея. И это штатный интерфейс операционной системы! Чего уж говорить о приложениях третьих фирм, разработчики которых не особенно задумываются над масштабированием под разные разрешения: многие из них рассчитаны на 96 ppi, и ни пикселем больше! И даже в Windows 8, где, как хвастались в Microsoft, проблема с интерфейсом практически решена, она всё так же актуальна, как и проблема с приложениями сторонних разработчиков, окна которых приходится разглядывать под увеличительным стеклом.

Так или иначе, старт дан, и мы становимся свидетелями очередной гонки за красивыми числами, смысла в которых не больше, чем в полётах со стерхами. Остаётся надеяться, что у ввязавшихся в это сомнительное мероприятие компаний появятся какие-то действительно полезные разработки и технологические прорывы. Иначе мы снова рискуем получить никому не нужные 20-мегапиксельные «мыльницы» с мутной пластмассовой оптикой.

Буквально везде можно услышать о DPI и PPI, какие они все такие важные и нужные, даже использовать нужно умудряться все и сразу. О, да, и в веб-дизайне обязательно, а иначе, ну, какой же ты веб-мастер?! Но что на самом деле означают спецификации размера и как веб-дизайнер может их использовать? Нужно ли вообще обращать внимание на это или достаточно только использовать настройки по умолчанию?

По сути, все зависит от вашего проекта. Если вы заранее знаете для какой среды создаете сайт или логотип и как в дальнейшем ваша работа будет использоваться, можно сразу определить значения и необходимость работы с DPI и PPI. Но, между тем, перед началом работы с любым проектом не лишним будет вспомнить об этих значениях и освежить в памяти некоторые моменты.

В этом материале мы поговорим о DPI и PPI более подробно и на примерах, чтобы разобраться, когда и в каких случаях веб-дизайнеру стоит обращать на них внимание. Сразу оговоримся, что статья может показаться «сухой» и скучной, но мы уверены, интересные моменты вы в ней найдете. Как ни странно, но значения PPI могут и не могут влиять на дизайн и на изображения , даже на сторонние файлы PSD и копируемые данные. А еще ведь существует PPI монитора. И представьте, что все это связано. В конце мы подведем итог и обобщим все умозаключения.

Пиксели и PPI

Пиксели, как состав изображений, относятся к мельчайшим единицам, которые на сетке выкладывают некоторую картинку. Соотношение количества пикселей на один дюйм - PPI. Соответственно, чем больше это количество, тем четче будет изображение, станут доступны для взора мельчайшие детали композиции. Пикселизация же происходит в том случае, если количество пикселей на дюйм очень маленькое. Соответственно, каждый пиксель обретает очень четкие края, явно видимые. Тесноты среди них нет.

PPI является мерой качества изображений и используется в Photoshop по умолчанию. При работе с фотографиями можно изменить дискретизацию изображения или ресамплинг (изменить количество пикселей) или изменить размер изображения (размер каждого пикселя, но не их количество). В Photoshop в окне изменения размера необходимо следить за соотношением значений количества пикселей и ресамплингом (детализация и увеличение количества пикселей).

Веб-стандарт для изображений составляет 72 пикселя на дюйм. При таком значении изображения выглядят красиво, если они изначально имеют хорошее качество (не искажены, четкие). Имейте в виду, что ваша фотография всегда должна иметь полный размер и быть широкой, чтобы полностью заполнять рамки и границы размещения. Например, большое изображение в шапке страницы Facebook. Изображение должно обладать шириной 851 пикселей. Чтобы предотвратить пикселезацию при разрешении в 72 пикселя на дюйм ширина вашей готовой картинки должны быть почти на 12 дюймов шире.

Сравните разницу.

И

Удивительно, но на текст PPI тоже имеет свое влияние. Аналогично тому, как большое количество пикселей на дюйм делает фотографию более четкой, текст тоже становится удобочитаемым. Шрифты с высоким PPI легче воспринимать, они разборчивее, даже если буквы созданы маленьким размером. Иными словами, текст может четким и нечетким, точно также как и фотографии.

Наконец, когда мы размышляем о роли пикселей в веб-дизайне, нужно помнить, что окно браузера постоянно меняется в пределах одного пользователя. Это несколько лет назад все старались иметь одну форму приложений, один размер окна и, соответственно, сайты создавались под эти требования. Теперь все больше веб-дизайн создается адаптивным, но работая масштабируемыми слоями, можно позволить изображениям увеличиваться пропорционально окну браузера, но при этом не выходить за рамки своего фактического размера. Это дает возможность картинкам сохранить целостность и качество.

Одновременно с важностью PPI для интернета, для печати данные значения мало что могут сделать полезного. Для спецификаций печати более уместно использовать точки на дюйм или DPI.

Точки и DPI

Термин DPI или количество точек на дюйм был разработан для возможности работы с качеством изображения для печати. Когда фотография печатается, она состоит из сотен тысяч крошечных точек, которые накладываются друг на друга и рядом друг с другом разными по цветности чернилами. Также в этих точках происходит смешивание чернил, сформировывая тем самым больший спектр цветов и оттенков. Значение DPI - количество печатных точек на дюйм. Чем это значение выше, тем изображение выглядит плавнее и качественнее, а градиентные переходы становятся реалистичными.

Но в обыденности, зачастую, люди используют DPI для обозначения любого разрешения и путают с PPI. Если же вы работаете с проектом, непредназначенным для печати, то путаницы и проблем с DPI быть не должно. Если же создаете логотип, который будет использоваться и в печати (визитки, бланки и пр.) и на сайте, то необходимо создавать качественные изображения изначально. Создавайте копию изображения с высоким DPI, которое будет предназначаться исключительно для печати.

Когда же мы смотрим на экран, то маловероятно, что кто-то способен увидеть разницу между двумя одинаковыми изображениями, созданными в 100 DPI и 300 DPI. Причина в том, что мониторы не отображают графику в точках. Для них значения DPI не имеют никакого значения.

Для печати же стандартом принято считать значение 300 DPI. Это важно, чтобы сам принтер не смог изменять это значение в случае его отсутствия в свойствах рабочего файла. В противном случае, изображение будет искажено, даже цветовые оттенки могут измениться.

DPI также вступает в работу, чтобы преобразовать печатный элемент в цифровой формат. Чем выше значение, тем выше качество сканируемого документа. В целом, качественные фотографии имеют DPI 200 при реальном размере. Но всегда стоит попробовать сканировать и при высоких параметрах, тогда будет удобнее редактировать данные, увеличивать и распечатывать повторно.

Мегапиксели

Поскольку мы говорим о том, что в веб-дизайне необходимо использовать высококачественные изображения, то стоит упомянуть и о Мегапиксельной форме одного пикселя. Мегапиксельный блок используется профессиональными фотокамерами, чтобы пользователи могли понять, каково оно, высокое качество фотографии и как это красиво по сравнению с обычными вариантами. Если обратиться к цифрам, то один Мегапиксель равен одному миллиону пикселей.

Все цифровые изображения, вне зависимости от источника, состоят из пикселей (не точек). Мегапиксели только помогают понять разрешение и качество фотографии, которое будет на выходе. Это как упрощение исчисления: сантиметры, метры, километры.

Цифры в веб-дизайне

У пикселя нет размера, значения, смысла вне его представления в математике. Он только связующее звено между физическим размером экрана (дюймы), экранным разрешением (пиксель на дюйм) и пиксельным размером экрана (пиксели). Обычные десктопные экраны (не Retina) обычно имеют PPI от 72 до 120. Дизайн с PPI между 72 и 120 дает уверенность в том, что ваша работа будет иметь примерно одинаковые пропорции в размере.

Общая формула расчета и вычисления изменения размеров в зависимости от разрешения и размеров выглядит так:

Вот вам пример: экран монитора LG w2253tq 22 дюйма располагает PPI = 102, что означает, что он отображает 102 пикселя на дюйм экранной площади. Ширина самого экрана примерно 18,8 дюймов, так что 18,8*102 приблизительно 1920, что и формирует родное разрешение экрана в 1920х1080 рх.

Нашли удобный калькулятор PPI мониторов, думаем, пригодится вам.

Например, вы нарисовали синий квадрат размером 102х102px на экране с PPI 102.

Этот квадрат будет иметь физический размер 1х1 дюйм. Но если экран пользователя имеет PPI = 72, ваш синий квадрат будет крупнее по своим физическим размерам. Так как PPI = 72, понадобится примерно полтора дюйма (грубо округлили) экранного пространства, чтобы отобразить квадрат со стороной в 100 пикселей. По формуле выше это рассчитывается легко и быстро.

Именно поэтому веб-дизайн сайта каждый пользователь видит по-разному. Цель же веб-мастера - поиск лучшего компромисса, который будет удобен большинству, поскольку не все обладают тем экраном, что у вас.

Интересен еще один момент

Что будет, если менять значение PPI в Photoshop и создавать проекты под PPI 100 или 120. Дело в том, что цифровой контент изначально измеряется в пикселях вне зависимости от значения PPI. На дизайн PPI не имеет влияние, как таковое. Именно поэтому при необходимости увеличения изображений используются множители.

В Photoshop создаем новый документ и выбираем PPI 72. Создаем квадрат 102х102 пикселя и текст 14 пунктов.

Затем аналогично создаем квадрат и текст в документе с PPI 102.

Сравниваем, что получилось. Текст во втором случае (родном для монитора) стал крупнее, а квадрат остался тем же самым, он не изменился. Дело в том, что Photoshop автоматически масштабирует значение пунктов в соответствии с PPI документа. Вот и получилось увеличение размера текста при рендеринге.

Что касается квадрата, то его значения были указаны в пикселях, поэтому его размер не изменился. Пиксель никогда не меняется, какой бы PPI не выбрать. Чтобы квадрат изменился, в размере нужен другой PPI самого монитора, экрана. Программно такое не сделать.

Поэтому помните, что в веб-дизайне PPI влияет только на восприятие вашего макета, на изображения, на размеры блоков. А также на процесс работы со шрифтами, которые измеряются в пунктах (принято так).

Есть еще вариант, если у вас несколько разных PSD с разными настройками в файлах PPI . Что произойдет в Photoshop? Приложение автоматически настроит размеры элементов пропорционально вашему экрану и значениям PPI. То же самое будет, если вы работаете с макетом сайта в разрешении 72 PPI, а логотип вставляете из документа 100 PPI. Изображение будет изменено автоматически и это может вызвать проблемы.

Решение, впрочем, есть. Изначально работайте в общепринятом разрешении 72 PPI. Это настройка по умолчанию в Photoshop. Но если вам говорят клиенты или знакомые/друзья, что с макетом как-то не так всё, подумайте, а как они открывают его и какие у них настройки приложения.

Кроме того стоит помнить о векторных изображениях , которые хорошо масштабируются и предотвращают необходимость создания нескольких пиксельных картинок с разным PPI. Векторное автоматически будет изменяться в зависимости от множителя, монитора, разрешения и прочего. Но использование вектора имеет свои ограничения. Например, сложную графику не создашь: тени, градиенты и прочее. Вектор может быть очень тяжеловесным, а потому система пользователя может попросту «зависать» на тех сайтах, где приходится обработать много векторных данных.

Выводы

При использовании соответствующих значений PPI или DPI для вашего проекта, можно влиять на его качество и внешний вид. В тоже время, PPI предназначается исключительно для работы с цифровым контентом и влияет на качество изображений.

PPI играет важную роль в веб-дизайне, поскольку влияет на изображения и на соотношение элементов. С одной стороны, фотографии могут быть размытыми или четкими, с другой, размерность может изменяться, если она изначально не выражалась в пикселях. Если вы хотите, чтобы весь дизайн выглядел превосходно, то используйте только значения вашего родного монитора или значения по умолчанию. Пиксели не любят полумер. Не существует полпикселя или полтора пикселя. Есть один или два, поэтому точность важна, прежде всего. А добиться её можно только при работе с родными для вас параметрами.

Другой момент в том, что многие пользователи сами изменяют разрешение страницы сайта, чтобы было комфортнее читать/смотреть. Тут уже дизайн сайта может выглядеть удручающе плохо и неказисто. Но сделать навряд ли что-то можно, поскольку посетителям важно удобство. Поэтому помните, что разрешение файлов принято использовать в 72 PPI. Это сэкономит больше места на сервере. Файлы изображений будут небольшими и загружаться быстрее станут. И хотя они будут меньше оригинальных фотографий, в большинстве же случаев, на экране пользователей они будут больше, поскольку PPI мониторов у всех разный и преимущественно 100+ PPI.

Знание в чем заключается разница этих величин и где они используются, будет полезным многим имеющим отношение к полиграфии. Будь то дизайнер, писатель или иной творец печатной продукции.

Что такое ppi

Говоря простым языком - любое растровое изображение состоит из пикселов - цветных прямоугольных точек. Уточним, что растровое изображение - это изображение, по структуре своей представляющее сетку пикселей на мониторе компьютера. Популярные растровые форматы - psd , tiff , png , bmp или jpg - редактирование которых возможно в среде специализированного ПО, наподобие Adobe PhotoShop . Растровых форматов, разумеется, намного больше перечисленных, но для понимания того, о чем идет речь, приведенных форматов будет вполне достаточно.

Возвращаясь к пикселам, из которых состоит растровое изображение, можно сказать, что это своеобразное мозаичное полотно из цветных точек. Точнее квадратиков. Каждый квадратик может иметь только один цвет. Но на изображении могут находится пикселы разных цветов и оттенков. За счет этого и достигается перетекание одного цвета в другой.

Для примера возьмем полоску из 1000 таких квадратиков (пикселей). На одном конце будет черный квадратик на другом белый. Между ними будут находится квадратики разных оттенков. Каждый квадратик с удалением от серного и приближения к белому будет чуть светлее предыдущего. При большом увеличении мы конечно будем видеть, что все квадратики разного оттенка. Но при отдалении возникнет иллюзия плавного перетекания цвета или градиент.

Поскольку изображение имеет не только длину, но ширину, заполняя плоскость, то величина ppi показывает сколько квадратиков (пикселей) приходится на сторону условной единицы измерения. За единицу измерения пикселей в растровых изображениях за стандарт принят один дюйм. Следовательно, маркировка в 100 ppi говорит нам о том, что на один дюйм приходится 100 пикселов. В квадратном же дюйме пикселов при таком разрешении графического изображения будет 10000 (100х100). Повторимся, что цвет квадратного дюйма может быть каким угодно. Цвет же одного пиксела только один.

Что такое lpi

Теперь, поговорим о переносе изображения с монитора компьютера на бумагу. Монитор позволяет отображать не только цвета пикселов, но и регулировать их яркость. Этого не скажешь об офсетных печатных станках и принтерах. Связано это с чисто технической невозможностью на таких устройствах регулировать уровень краски для каждого отдельного пиксела. Печатные устройства позволяют лишь нанести краску на определенные места бумаги либо не наносить ее.

Проблему нанесения объема краски на конкретных участках печатники решили с присущей им изящностью. Они попросту осуществляют регулировку площади закрашиваемой поверхности в конкретном месте на бумаге. При таком подходе даже с одинаковой толщиной нанесенного слоя краски можно регулировать яркость путем увеличения или уменьшения напечатанных точек. Этот процесс называется растрированием.

Все офсетные машины для печати работают по принципу растрирования. Если вы возьмете увеличительное стекло и рассмотрите офсетную печать, то без труда различите точки из которых состоит печатное изображение. Поскольку метод растрирования появился намного раньше изобретения компьютеров, то и величина измерения растра не имеют к ним никакого отношения. Первоначально при растрировании применяли контактные растры. Это прозрачная пластина с нанесенной на нее мелкой штриховкой.

Величина lpi показывает количество штрихов на растровой пластине в дюйме. Эта величина соответствует количеству точек на дюйм в отпечатанных растрированных изображениях. Этот показатель применяется только к растрированным изображениям и более нигде не используется. Указанный параметр относится к растрирующим печатным устройствам. Его невозможно применить к изображению на компьютере, поскольку, хоть оно и называется растровым, но на самом деле является полутоновым.

Видя у принтера в настройках величину lpi вы должны понимать, что ни на что, кроме как на количество растровых точек в дюйме, она не влияет. Для более полного понимания различий между ppi и lpi стоит сказать, что самая маленькая часть изображения на компьютере – пиксель. Самая маленькая часть изображения на бумаге - точка.

В принципе, эти показатели должны совпадать при печати изображения. Однако, зачастую дизайнеры совершают не то что бы ошибку… Просто они сдают макет в печать, который в разы превышает технические возможности печатного оборудования. Наиболее распространенным разрешением изображения у дизайнеров является 300 ppi. Они приносят проект с таким разрешением в газету. Но при печати газет применяется растрирование максимум в 100 lpi. В итоге мы получаем что исходный файл мог бы быть в 9 раз меньше.

Что такое dpi

Теперь разберемся с величиной dpi. Эта величина применяется только к растрирующему печатному устройству. На самом деле, точки, из которых складывается показатель lpi, в свою очередь состоят из более мелких точек. Ряд этих мельчайших точек, равен одному проходу лазера на фото-барабане или пленке. Получается, что для изображения одного lpi используется множество dpi.

Понятно, что чем выше отношение lpi к dpi тем более высокого качества печать мы получим на выходе. Здесь опять срабатывает эффект мозаики. Чем меньше ее кусочки, тем более точной и детальной она становится. Так же и dpi влияет на lpi, чем больше маленьких точек будет использовано для создания большой точки растра, тем более точной будет эта точки. Изображения высокого разрешения при печати могут использовать соотношения от 150 lpi 2540 dpi и выше. Что касается печати газет, то там достаточно соотношения 100 lpi 1200 dpi.

Похожие статьи