Где найти рисунок печатной платы imax b6. Устройства с совместимостью LiPo

19.04.2019

Если занимаетесь электроникой, возможно у вас есть умная зарядка Imax B6 (mini). В комплект не входят балансировочные разъемы и бокс для установки аккумуляторов. Конечно, умельцы начинают их делать своими руками из подручных материалов или готовых купленных запчастей. У кого-то это получается лучше, а у кого-то — нет. В этом посте подробно расскажу, покажу, как сделать.

Для изготовления мне потребовалось:

1. Бокс 2×18650;

2. Бокс 4×18650;


3. Балансировочные разъемы 2s 3s 4S 5S 6s;

4. Провода AWG18;

5. Щупы бананы;

6. Винтовые клеммные колодки 2EDG-5.08-4P + 2EDGV-5.08-4P — 2шт.;

7. Фольгированный стеклотекстолит.

И так, надо изготовить печатную плату

Сделано в программе Sprint Layout, . Скачать печатной платы, формат lay6

После травления платы, все собираем и припаиваем.

Ниже на фото разъем подключен на 5 пять банок. Шестой отсек держателя использовать не будем, так как заряжаем 5 АКБ.

Схема подключения к балансировочному разъему Imax B6

Не имеет значения какое у вас зарядное, оригинал — не оригинал, все они имеют пять сокетов для балансировки литиевых аккумуляторов до 6 штук. Для подключения к балансировочному сокету, соедините все банки последовательно, затем 1-й провод (красный) разъема идет на плюс сборки, а последний провод на минус сборки, соединения между банками идут на промежуточные провода разъема. На (+ ) первой банки и ( ) последней, необходимо припаять щупы бананы. Ниже приведена схема подключения максимального количества аккумуляторов.

На данном примере видим максимальное подключение аккумуляторов, 6 штук. Для подключения пяти, четырех … делаем аналогично, не забываем соблюдать полярность.

Представляю не совсем обычный обзор популярной зарядки - он написан не столько пользователем, сколько электроником схемотехником. Будет много технической информации и первая в инете реальная принципиальная схема устройства.

Официальная страничка производителя
www.skyrc.com/index.php?route=product/product&product_id=200
Там-же можно скачать инструкцию на английском языке и программное обеспечение

Коробка со всех сторон











Инструкция только на английском языке


Само устройство завёрнуто в мягкий пакетик


Кабели в комплекте


На экран наклеена предупреждающая бирка о том, что если что-то пошло не так - сами виноваты, нечего было без присмотра оставлять:)












Проверка оригинальности прошла нормально (даже не сомневался)






Исходная версия прошивки V1.10


Прошивка была обновлена на V1.12 - в ней добавилась возможность заряжать литий без подключения балансировки, что иногда может быть полезно, а иногда и опасно


Под Win8.1 прошить не удалось - прошивал под Wn7 с переключением языка на английский.
Под WinXP программа отказалась запускаться.

Как работать с этой зарядкой многократно написано в других обзорах (ссылки внизу) и не имеет смысла повторяться, раздувая обзор, поэтому постараюсь рассказывать только новую информацию.

Разбирается зарядка очень просто - на 8 винтиках с торцов



Маленький нестандартный вентилятор охлаждения 25х25х7мм на 15V.


Вентилятор настолько редкий, что даже в каталоге у производителя его не оказалось, видимо по спец заказу делают…

Вентилятор большего размера на это место никак не войдёт.
Температура включения вентилятора 40гр выключения 35гр, работает на выдув горячего воздуха. При нагреве, вентилятор включается сразу на полное входное напряжение и соответственно его скорость вращения определяется входным напряжением. При напряжении более 15В, вентилятор будет перегружаться и сильно шуметь.

Далее, плата откручивается от нижней крышки


И вот она, красавица:)










Собрана аккуратно, пайка качественная, флюс почти отмыт.
Токоизмерительные шунты нормальные проволочные - 0,03Ом для контроля цепи заряда и 0,1Ом для контроля разрядной цепи.

Полная разборка сопряжена с трудностями снятия индикатора - он намертво припаян к основной плате. Максимум, что возможно сделать без выпаивания - это немного отогнуть его




Дальше мешает разъём подключения вентилятора.

Плата была отмыта от флюса и термопасты (для подробного исследования)








Комплектные провода нормального качества, крокодилы припаяны

Реальную схему iMAX B6 mini найти не удалось, при этом схема простого B6 имеется.

Данная схема имеет множество ошибок, да и вид у неё такой, что глаза сломаешь, пока найдёшь, как эти кусочки между собой связываются.

Делать нечего, надо рисовать нормально читаемую принципиальную электрическую схему B6 mini…
Рисовал тщательно и очень долго, приводя её в понятный вид, потом долго думал…
Для полноразмерного просмотра щёлкните по схеме.

Работает схема вполне понятно (будет ниже), но назначение некоторых элементов разгадать так и не удалось (скорее всего это просто ошибки производителя)
- на плате распаян не подключенный керамический конденсатор


- зачем-то поставлен резистор на входе логического транзистора (который уже имеет его внутри)
- назначение диода в цепи измерения зарядного тока осталось загадкой

Спецификация применяемых компонентов:
Тайваньский контроллер под девизом «Make You Win» (чтобы выиграть)

Принцип работы похож на B6, схема оптимизирована для компактного исполнения, изменения в основном в лучшую сторону.

Для облегчения понимания работы схемы, упрощённо набросал отдельно силовую часть


Силовой преобразователь напряжения собран по классической схеме Step–Up/Down с одним общим накопительным дросселем и двумя ключами. Управление ключами организовано через контроллер при помощи ШИМ, которой и задаётся ток зарядки и разрядки.




Обратная связь зарядной цепи реализована чисто программными средствами.
Частота работы ШИМ в любом режиме около 32кГц
Напряжение на затворе полевика преобразователя Step Down в режиме зарядки при выходном напряжении 4В, активный уровень низкий.


Напряжение на затворе полевика преобразователя Step Up в режиме зарядки при выходном напряжении 16В, активный уровень высокий

Управляющее напряжение для полевика разрядки (работающий в линейном режиме) формируется из ШИМ сигнала через фильтр НЧ, который далее усиливается операционным усилителем (ОУ).
Обратная связь цепи разряда - аппаратная на базе ОУ.
Напряжение на выходе контроллера 11(P2.6) в режиме разрядки

Балансировка работает по принципу дополнительной нагрузки элементов с наибольшим напряжением в общей цепи. Ток балансировки зависит от напряжения на аккумуляторе и составляет 80-160мА на каждый элемент.
Примечательно, что балансировка работает не только при заряде аккумуляторов, но и при разряде тоже, дополнительно нагружая элементы с максимальным напряжением.
Напряжение на каждом элементе измеряется дифференциальным усилителем на базе ОУ и подаётся через коммутатор на АЦП контроллера. На этот-же коммутатор подаётся сигнал с обоих температурных датчиков.
Напряжение считывается довольно точно.

Задающий кварцевый резонатор отсутствует, поэтому точность учёта времени заведомо невысока.
Проверка показала, что мой экземпляр за час убегает на 45 секунд - это вносит дополнительную погрешность измерения ёмкости 1,2% (завышает показания)

Некоторые особенности схемы B6 mini и отличия от B6:
- Имеется два стабилизатора напряжения +5В - линейный для питания контроллера и импульсный для питания подсветки индикатора и подключаемого к USB Wi-Fi модуля беспроводной передачи данных. Наличие питания на USB может сыграть злую шутку - если зарядку подключить к выключенному компьютеру, импульсный преобразователь 5В может выйти из строя!
- USB подключается непосредственно в контроллер без преобразователей.
- Схема контроля напряжения на балансных разъёмах стала более логичной и правильной.
- Схема заметно упростилась за счёт применения логических N-P-N транзисторов DTC114 (маркировка 64) и составных P-N-P транзисторов KST64 (маркировка 2V)

Обнаруженные конструктивные проблемы:
- Габаритные конденсаторы не закреплены герметиком, следовательно зарядку лучше сильно не трясти и не ронять.


Исправляется нейтральным герметиком или компаундом


- Дроссель преобразователя висит на своих ножках и вибрирует при постукиванию по корпусу.


Можно закрепить нейтральным герметиком или компаундом


- Плата разъёмов балансировки припаяна только с одной стороны.


При желании, можно дополнительно пропаять.


- Металлическая рамка дисплея касается обмотки дросселя.


Желательно проложить изолятор или просто отогнуть лапку крепления рамки.




- Одна диодная сборка установлена с лицевой стороны платы и следовательно через пластину не охлаждается - при выходном токе зарядки более 4А, она сильно греется. Простыми способами исправить не получится.
- Полевик цепи разряда охлаждается через очень толстую мягкую силиконовую неармированную термопрокладку (3,5мм), что приводит к его довольно сильному нагреву в режиме разряда. Надеюсь, производитель знал что делал.


Можно теоретически прикинуть. Теплопроводность такой термопрокладки в лучшем случае 3Вт/мК, что при площади теплового контакта корпуса TO-220 1,0см2 и дырчатого корпуса зарядки 0,6см2, толщине 3,5мм даёт нагрев 15ºС на каждый Ватт. Через выводы на плату отводится около 1Вт, остальные 4Вт передаёт прокладка - полевик нагреется не менее 100ºС (4*15+40). Реальная измеренная температура при максимальной мощности 5Вт оказалась аж 114ºС (измерял термрпарой в районе крепёжного отверстия полевика). Немного снизить его температуру можно, если между корпусом и платой мазнуть термопасты.

Охлаждение остальных полупроводников организовано через бутерброд: термопрокладка 1мм - алюминиевая пластина 4мм - термопрокладка 1мм - алюминиевый корпус
Корпус зарядки изолирован от схемы.

Зарядка имеет реальную защиту от переполюсовки питающего напряжения и защиту от переполюсовки подключённого аккумулятора, при этом защита от КЗ отсутствует.

Применяемые ОУ не являются прецизионными, поэтому изначально имеется заметная погрешность уставки малых токов. Например, при типичном начальном смещении ОУ LM2904 3мВ, ток разряда запросто может сместиться на 0,03А, а заряда сразу на 0,1А! Именно поэтому производителю приходится программно калибровать каждую зарядку для уменьшения погрешности уставки токов. Однако, температурный дрейф таким образом уменьшить нельзя.
Устранить этот недостаток возможно, используя прецизионные ОУ (например AD712C, AD8676 и т.д.) и более оптимально развести печатную плату, однако это приведёт к удорожанию производства. Заводская калибровка конечно в какой-то степени снижает это смещение, однако как её проводить самостоятельно - неизвестно.

К зарядке можно подключить внешний датчик температуры:
фирменный SK-600040-01


или самодельный на базе
Внутренний термодатчик расположен непосредственно около полевого транзистора разрядки.

Зарядка учитывает падение напряжения на соединительных проводах при протекании токов заряда и разряда (параметр Resistance Set). Значение параметра сохраняется даже при сбросе настроек по умолчанию. Не рекомендую бездумно менять это значение.
Соединительные провода Бананы-T + T-крокодилы имкют реальное общее сопротивление 38мОм, и оптимальное значение Resistance Set = 85

Некоторые программные глюки:
- отсутствует возможность корректировать напряжение заряда и разряда на Pb аккумуляторах
- литий в режиме стандартной зарядки заряжает аккумулятор до снижения тока 0.1А и менее независимо от уставки тока зарядки, что неверно. Конечный ток зарядки должен быть около 10% от тока уставки.

Соответствие реального и отображаемого напряжений при нулевом токе
0,0В – 0,00В
0,1В – 0,02В
0,2В – 0,12В
0,3В – 0,22В
0,4В – 0,32В
0,5В – 0,42В
0,6В – 0,52В
0,7В – 0,62В
0,8В – 0,72В
0,9В – 0,82В
1,0В – 0,92В
1,1В – 1,02В
1,2В – 1,12В
1,3В – 1,23В
1,4В – 1,33В
1,5В – 1,43В
2,0В – 1,93В
2,5В – 2,44В
3,0В – 2,94В
3,5В – 3,45В
4,0В – 3,95В
4,5В – 4,46В
5,0В – 4,96В
6,0В – 5,96В
7,0В – 6,96В
8,0В – 7,95В
9,0В – 8,94В
10,0В – 9,94В
12,0В – 11,92В
15,0В – 14,90В
20,0В – 19,90В
25,0В – 24,95В
30,0В – 29,95В
Занижение отображаемого напряжения означает, что аккумуляторы будут слегка перезаряжаться.

Соответствие установленного и реального тока заряда в режиме Pb при напряжении 3,5-4,5В
0,1А – 0,092А
0,2А – 0,202А
0,3А – 0,298А
0,4А – 0,399А
0,5А – 0,490А
0,6А – 0,614А
0,7А – 0,712А
0,8А – 0,802А
0,9А – 0,902А
1,0А – 0,997А
1,1А – 1,145А
1,2А – 1,245А
1,3А – 1,340А
1,4А – 1,430А
1,5А – 1,576А
1,6А – 1,675А
1,7А – 1,760А
1,8А – 1,860А
1,9А – 1,956А
2,0А – 2,13А
2,1А – 2,23А
2,2А – 2,33А
2,3А – 2,44А
2,4А – 2,55А
2,5А – 2,66А
3,0А – 3,23А
3,5А – 3,76А
4,0А – 4,20А
4,5А – 4,72А
5,0А – 5,27А
5,5А – 5,81А
6,0А – 6,33А
Включение вентилятора вызывает повышение тока на выходе на 0,03А из-за неоптимальной разводки общего провода.
С прогревом платы, ток заряда немного уменьшается, из-за температурного дрейфа ОУ, а также из-за участка фольги печатной платы в измерительной токовой цепи

График соответствия установленного и реального тока разряда в режиме Pb при напряжении 2-2,5В


Включение вентилятора вызывает повышение тока на выходе на 0,01А
Погрешность установки малых токов разряда очень велика - ток сильно занижен (особенно в диапазоне 0,2-0,8А). Именно поэтому отображаемая ёмкость аккумулятора при разряде зачастую превышает залитую ёмкость. Такое ощущение, что программная калибровка разрядного тока вообще не производилась. Для лития оптимальный ток разряда с минимальной погрешностью получается на токе 1,0А при этом будет завышение измеренной ёмкости на 3,5%

Литий в режиме Fast заряжает до падения тока зарядки 50% и менее в течение 1,5 минут. При этом аккумулятор реально заряжается не полностью (примерно до 95%).
Литий в режиме Charge заряжает до падения тока зарядки 0,1А и менее в течение 1,5 минут независимо от уставки тока зарядки.
LiPo заряжает до 4,20В на элемент (можно корректировать 4,18-4,25В), разряжает до 3,20В на элемент (можно корректировать 3,0-3,3В)
Li-Ion заряжает до 4,10В на элемент (можно корректировать 4,08-4,20В), разряжает до 3,10В на элемент (можно корректировать 2,9-3,2В)
Li-Fe заряжает до 3,60В на элемент (можно корректировать 3,58-3,70В), разряжает до 2,80В (можно корректировать 2,6-2,9В)

Свинец заряжает до 2,4В на элемент (без возможности корректировки) и падения тока 10% и менее в течение 10 секунд
Конечное напряжение разряда свинца 1,8В на элемент (без возможности корректировки) и без задержки

В режиме заряда NiCd и NMH напряжение зарядки подаётся без проверки подключения аккумулятора, при этом на выходе кратковременно появляется напряжение до 26В. Защита от КЗ при этом не работает - будьте осторожны!
Измеряемое входное напряжение слегка завышается - при реальных 12,00В показывает 12,18В
При входном напряжении менее 10В, на экране отображается DC IN TOO LOW (Низкое входное напряжение)
При входном напряжении более 18В, на экране отображается DC IN TOO HI (Высокое входное напряжение)

Максимальная выходная мощность зарядки сильно зависит от величины входного напряжения. Полную мощность она выдаёт только при входном напряжении 15В и более. Не зря родной БП имеет напряжение именно 15В.
График зависимости реальной выходной мощности по всему допустимому диапазону значений входных напряжений:


Максимальная мощность заряда 63Вт превышает заявленные 60Вт потому, что реальный ток превышает отображаемый на дисплее.

Альтернативные прошивки, к сожалению, пока отсутствуют.
Самостоятельная калибровка также пока недоступна.

Выводы: без сомнения, зарядка B6 mini очень интересная и несмотря на недостатки, порадовала своей работой. Потенциал этой зарядки пока ограничен желанием производителя, который не торопиться исправлять хотя-бы программные ошибки.
Надеюсь, информация из обзора была для Вас полезной.

Воистину говорят: лень - двигатель прогресса! Вот и мне, взбудоражила голову мысль, автоматизировать процесс измерения и тренировки кислотных аккумуляторных батарей. Ведь кто, в здравом уме, будет, в наш век умных микросхем, корпеть над аккумулятором с мультиметрами и секундомером? Наверняка, многие знают «народное» зарядное устройство Imax B6. На хабре есть про него (и даже не одна). Ниже я напишу, что я с ней сделал и зачем.

Точность

В начале, моей целью было увеличение разрядной мощности, чтобы измерить свои батареи для бесперебойника и, в перспективе, тренировать их, не подвергаясь риску преждевременной старости (меня, а, не аккумуляторов). Погонял устройство в разобранном виде.

Внутри оно щедро нашпиговано множеством дифференциальных усилителей, мультиплексором, buck-boost регулятором с высоким КПД, имеет хороший корпус, а в сети можно найти открытый исходный код очень неплохой прошивки. При токе зарядки до 5 ампер, им можно заряжать даже автомобильные аккумуляторы на 50А/ч (ток 0.1C). При всем, при этом этом, богатстве, в качестве датчиков тока, здесь используются обычные 1 Вт резисторы, которые, ко всему прочему, работают на пределе своей мощности, а значит, их сопротивление значительно уплывает под нагрузкой. Можно ли доверять такому измерительному прибору? Подув и потрогав руками эти «датчики» сомнения ушли - хочу переделать на шунты из манганина!

Манганин (есть еще константан) - специальный сплав для шунтов, который практически не изменяют своего сопротивления от нагрева. Но его сопротивление на порядок меньше заменяемых резисторов. Так же, в схеме прибора используются операционные усилители для усиления напряжения с датчика до читабельных микроконтроллером значений (я полагаю, верхняя граница оцифровки - опорное напряжение с TL431, около 2,495 вольт).

Моя доработка заключается в том, чтобы впаять шунты вместо резисторов, а разницу в уровнях компенсировать, изменив коэффициент усиления операционных усилителей на LM2904: DA2:1 и DA1:1 (см. схему).

Схема



Для переделки нам понадобятся: само устройство оригинал (я описываю переделку оригинала), манганиновые шунты (я взял от китайских мультиметров), ISP программатор, прошивка cheali-charger (для возможности калибровки), Atmel Studio для ее сборки (не обязательно), eXtreme Burner AVR для ее прошивки и опыт по созданию кирпичей успешной прошивке атмеги (Все ссылки есть в конце статьи).
А так же: умение паять SMD и непреодолимое желание восстановить справедливость.

Я нигде не учился разработке схем и вообще радиолюбительству, поэтому вносить такие изменения в работающее устройство вот так с ходу, было лениво боязно. И тут на помощь пришел мультисим! В нем возможно, не прикасаясь к паяльнику: реализовать задумку, отладить ее, исправить ошибки и понять, будет ли она вообще работать. В данном примере, я смоделировал кусок схемы, с операционным усилителем, для цепи, обеспечивающей режим заряда:

Резистор R77 создает отрицательную обратную связь. Вместе с R70 они образуют делитель, который задает коэффициент усиления, который можно посчитать примерно так (R77+R70)/R70 = коэффициент усиления. У меня шунт получился около 6,5 мОм, что при токе 5 А составит падение напряжения нем 32,5 мВ, а нам нужно получить 1,96 В, чтобы соответствовать логике работы схемы и ожиданиям её разработчика. Я взял резисторы 1 кОм и 57 кОм в качестве R70 и R77 соответственно. По симулятору получилось 1,88 вольт на выходе, что вполне приемлемо. Так же я выкинул резисторы R55 и R7, как снижающие линейность, на фото они не используются (возможно, это ошибка), а сам шунт подключил выделенными проводами к низу R70, C18, а верх шунта напрямую к "+" входу ОУ.

Лишние дорожки подрезаны, в том числе, и с обратной стороны платы. Важно хорошо припаять проводки, чтобы они не отвалились, со временем, от шунта или платы, потому что с этого датчика запитывается не только АЦП микроконтроллера, но и обратная связь по току импульсного регулятора, который, при пропадании сигнала, может перейти в максимальный режим и угробиться.

Схема для режима разрядки принципиально не отличается, но, так как я сажаю полевик VT7 на радиатор, и увеличиваю мощность разрядки до предела полевика (94Вт по даташиту), хотелось бы и максимальный ток разряда выставить по-больше.

В результате я получил: R50 – шунт 5,7 мОм, R8 и R14 - 430 Ом и 22 кОм соответственно, что дает требуемые 1,5 вольт на выходе при токе через шунт 5 А. Впрочем, я экспериментировал и с большим током - максимум вышло 5,555 А, так что зашил в прошивку ограничение до 5,5 А (в файле «cheali-charger\src\hardware\atmega32\targets\imaxB6-original\HardwareConfig.h»).

По ходу вылезла проблема - зарядник отказался признавать, что он откалиброван (i discharge). Связано это с тем, что для проверки используется не макроопределение MAX_DISCHARGE_I в файле «HardwareConfig.h», а вторая точка калибровки для проверки первой (точки описаны в файле «GlobalConfig.h»). Я не стал вникать в эти тонкости хитросплетения кода и просто вырезал эту проверку в функции checkAll() в файле «Calibrate.cpp».

В результате переделок, получился прибор, который обеспечил приемлемую линейность измерений в диапазоне от 100mA до 5А и который можно было бы назвать измерительным, если бы не одно но: так как я оставил мощный разрядный полевик внутри корпуса (несмотря на улучшенное охлаждение), нагрев платы от него все равно вносит искажение в результат измерения, и измерения немного «плывут» в сторону занижения… Не уверен, кто именно виноват в этом: усилитель ошибки или АЦП микроконтроллера. В любом случае, ИМХО, стоит вынести этот полевик за пределы корпуса и обеспечить там ему достаточное охлаждение (до 94Вт или заменить его на другой подходящий N-канальный).

Прошивка

Не хотел я писать про это, но меня заставили.

Немного про мою доработку охлаждения

Полевик VT7, на новом месте, приклеен на термоклей, а его теплоотвод - припаян к медной пластинке:

Охлаждение решил сделать из ненужного радиатора на тепловой трубке от мат-платы. На фото видно подходящую по размерам прижимную пластину и площадку транзистора, по периметру которой проложена изолирующая пластмасса - на всякий случай. Пяточек из жала паяльника припаян прямо к плате, к общему проводу - будет играть роль дополнительного теплоотвода от преобразователя:

Собранная конструкция не помешает стоять прибору на ножках:

Готовы к прошивке:

Я испытал эту переделку в пассивном режиме охлаждения: разряд 20 минут 6-вольтовой Pb-батареи максимальным током 5,5А. Мощность высветилась 30...31Вт. Температура на тепловой трубке, по термопаре, дошла до 91°C, корпус тоже раскалился и, в какой-то момент, экран начал становиться фиолетовым. Я, конечно, сразу прервал испытание. Экран долго не мог прийти в норму, но потом его отпустило.

Теперь уже очевидно, что выносной блок нагрузки, с разъемным соединением, был бы наилучшим решением: в нем нет ограничений на размер радиатора и вентилятора, а сама зарядка получилась бы более компактной и легкой (в поле разряд не нужен).

Надеюсь, что эта статья поможет новичкам быть смелее в экспериментах над беспомощными железяками.
Замечания и дополнения приветствуются.

Предупреждение : описанные модификации, при неумелом применении, могут повредить компоненты зарядки, превратить ее в необратимый «кирпич», а так же привести к снижению надежности устройства и создать риск пожара. Автор снимает с себя ответственность за возможный ущерб, в том числе за зря потраченное время.

В IMAX B6: схема и печатная плата

Вот я и сделал схему и печатку зарядного устройства. В основном упирал на оформление схемы, печатка получилась так себе. Правда, качество разводки и в оригинале не блещет. Мне не очень интересная оригинальная разводка, ведь я рассматриваю переделку всей печатки.

Есть небольшие отличия от оригинала, потому что я поленился из рисовать. Я не стал рисовать USB-порт, и кварц. Долгое время уже сижу на PIC24, там кварц обычно нафиг не нужен.

Прошу помощи по прохождению нормоконтроля по ГОСТ в оформлении схемы (pdf , p-cad2006). Где есть косяки(кроме того, что нумерация компонентов не по порядку)? Уж сильно много времени убил на оформлении, буквально каждый компонент перерисовывал из своей библиотеки. Получилось красиво, но хочется ещё красивее. Для сравнения, чья-то схема IMAX B6 . Нормоконтролировать картинки в посте не надо, на картинках может быть старая версия.

Вот ещё печатка (тоже P-CAD 2006)

Переченя элементов пока так же нет, почти все номиналы на схеме.

А теперь я расскажу как работает схема. Она весьма интересная.

1. Защита от переполюсовки по питанию

Защита сделана на N-канальном MOSFET транзисторе. Такое решение позволяет обеспечить почти нулевое падение напряжения, по сравнению с защитой на диоде. Например, при токе 3А 12В диод довольно сильно грелся бы, более Ватта.
У этой схемы есть небольшой недостаток: для повышенного напряжения, более 20В, резистор R6 надо заменить на 10-вольтовый стабилитрон.

2. DC-DC преобразователь
Для работы зарядного устройства необходимо наличие регулируемого источника питания. Источника, способного из 12 В сделать как 2В, так и 25В. Вот его схема:


Управляется преобразователь тремя линиями:
1) Линия DCDC/ON_OFF - это запрет работы преобразователя. Подавая на линию 5V, выключается как VT26 (ключ для STEP-UP режима), так и VT27 (ключ для STEP-DOWN режима).
2) Линия STEPDOWN_FREQ двойного назначения: в STEP-UP режиме на этой линии должно быть 5V, иначе питание на катушку L1 не поступит, в step-down на этой линии должна быть частота. Регулируя скважность меняем выходное напряжение.
3) Линия SETDISCURR_STEPUPFREQ. В повышающем режиме на этой линии ШИМ, в понижающем - 0V
Дополнительно реализована защита от КЗ по линии аккумулятора: при превышении зарядного тока сработает VT8, и питание с преобразователя будет снято, транзистор VT26 разомкнётся. Как точно это работает, я не разобрался, можете сами поизучать схему.

Вопрос залу: что делают R114+R115+C20?

Силовые MOSFET ключи VT26 и VT27 управляются двухтактный эмиттерным повторителем: VT13-VT14 и VT17-VT18.

Частота работы преобразователя 31250кГц.

Данный преобразователь нельзя включать без минимальной нагрузки, в качестве которой выступает R128. Причём, в моей версии зарядки, он припаян напаян он поверх других элементов - ошибка разработчиков.

3. Включение аккумулятора

Ни один вывод аккумулятора не подключен на землю напрямую. Это касается как силовых цепей, так и балансировочного разъёма. Плюс аккумулятора подключен на DC-DC преобразователь, минус - к зарядному транзистору. Включив Charge transistor, а также регулируя напряжение на DC-DC, устаналивается необходимый зарядный ток.

4. Защита от дурака при переполюсовке аккумулятора


Включением заряда управляет DA4.2, и заряд идёт лишь при правильном подключении аккумулятора. Запретить же заряд может и контроллер, транзистором VT9.

5: Схема разряда


Схема разряда построена на транзисторе VT24 и двух операционниках. Для включения разряда надо открыть VT12. VT24 - разрядный транзистор. Именно он рассеивает тепло при разряде. Управляет им два операционных усилителя.
Посылая на вход двух RC-цепочек меандр,


контроллер формирует напряжение на In+ DA3.2:

DA3.2 - это схема интегратора(фильтр низких частот). Он будет увеличивать напряжение на выходе (и на затворе разрядного транзистора VT24), а значит и разрядный ток до тех пор, пока напряжение на выводах In+ и In-(красные цепи) не сравняются. На In+ подаётся опорный сигнал от контроллера, на In- сигнал со схемы обратной связи на DA3.1. Результат - ток плавно нарастает до номинального
Коричневый провод - запрет разряда. Если на нём 5 Вольт - разряд запрещён.
По синей линии можно проконтролировать фактический разрядный ток.

6. Схема балансировки и измерения напряжения на ячейках


Как, например измерить напряжение шестой ячейки? Напряжение BAL6 и BAL5 с шестой ячейки подаётся на дифференциальный усилитель DA1.1, который из 25В на шестой ячейки вычитает 21В на пятой. На выходе - 4В.
Нижние ячейки измеряются без участия дифференциального усилителя, делителем. Особо отмечу, что измеряется даже "земля"(BAL0).
Выход коммутируется мультиплексором HEF4051BT на контроллер. Без мультиплексора - никак, ног не хватит.

Балансировочная схема сделана на двух транзисторах. Применительно к шестой ячейке это VT22 и VT23. VT22 - цифровой транзистор, в нём уже встроены резисторы, и он подключается напрямую к выводу контроллера. Если микроконтроллер замечает, что какая-то ячейка перезарядилась, он остановит заряд, включит соответствующую перезаряженной ячейке схему, и через резисторы побежит ток около 200мА. Как только ячейка немного разрядилась, вновь включается заряд всей батареи аккумуляторов.

7. Цифровые цепи


Контроллер измеряет контроллером напряжения на плюсе и минусе аккумулятора. Если произойдёт переполюсовка - на экран будет выведено предупреждение.
Подсветка индикатора зачем-то запитана от транзистора, сам индикатор включен в 4-битном режиме.
Ещё из интересного - источник опорного напряжения TL431.

Ещё вопрос к залу про кварц: неужели для ATMEGA кварц обязателен?

Imax B6 подходит для разных типов батарей. Управляется модификация при помощи качественного микропроцессора. Данная модель выделяется широким диапазоном тока зарядки. Также стоит отметить, что у нее предусмотрена функция ограниченного заряда. Входное напряжение непрерывно отслеживается.

Если говорить про характеристики зарядки, то минимальное напряжение равняется 10 В. Мощность находится на уровне 60 Вт. Минимальный ток разряда у модификации равняется 0.1 А. Также стоит упомянуть о компактных размерах устройства. При длине в 133 мм и ширине в 87 мм, модель имеет толщину только 33 мм. Стоит модификация на рынках примерно 1500 руб. Однако можно изготовить Imax B6AC своими руками.

Схема зарядки

Стандартная схема зарядки включает в себя один микропроцессор, модуль, котроллер и блок расширителя. Также стоит отметить, что в оригинальной версии используется варикап. Он отслеживает импульсные колебания в электрической цепи. За совместимость с батареями отвечает конденсатор. Тиристор применяется на два переходника. Для защиты зарядки используются изоляторы разной проводимости. На входе установлен один фильтр, который работает от усилителя. Также стоит отметить, что у зарядки имеется выпрямитель. И он является частью расширителя.

Делаем блок под зарядку

Сделать блок питания для Imax B6 своими руками довольно просто. В первую очередь подбирается трансформатор. Динистор для этих целей разрешается использовать низкочастотного типа. Для преодоления высокой чувствительности устанавливаются три фильтра на обкладке. Затем, чтобы сделать блок питания для Imax B6 своими руками, берется усилитель. Указанный элемент работает при напряжении 15 В. Предельная частота при этом равняется не менее 55 Гц.

Установка балансировочного разъема

Под Imax B6 балансировочный разъем своими руками может делаться различными способами. Наиболее часто эксперты для этого применяют линейный переходник. Начинать пайку стоит от компаратора. Он установлен за расширителем и является его неотъемлемой частью. При проведении работ проверяется отрицательное сопротивление. Данный параметр у нормальной модели составляет примерно 50 Ом.

Второй способ сборки заключается в установке сеточного переходника на Imax B6. Балансировочный разъем своими руками припаять проблематично. Переходник довольно сложно достать. Однако он имеет массу преимуществ. В первую очередь редко перегревается. Также элемент является прочным. Кроме того, он обладает неплохой проводимостью.

Термодатчик для модификации

Сделать термодатчик для Imax B6 своими руками можно с использованием емкостного триода. В первую очередь при сборке заготавливается Модулятор целесообразнее применять контактного типа. Далее, чтобы собрать для Imax B6 своими руками, нужно воспользоваться фазовым компаратором. Он устанавливается за фильтром. При этом адаптер потребуется на инверторных транзисторах. Проводимость у них должна быть не ниже 45 мк.

Модификация на 10 В

Собирается зарядка Imax B6 своими руками (фото показано ниже) довольно просто. Во время работы важно правильно подобрать конденсатор. Он влияет на общую работоспособность зарядки. В оригинальной версии применяется микропроцессор проводного типа. Для его установки придется использовать трансивер, который крепится к плате через порт. Также стоит отметить, что на выходе у зарядки должно быть напряжение не более 8 В.

Многие специалисты говорят о том, что конденсаторы полевого типа лучше не использовать. Для уменьшения тепловых потерь применяться переходные фильтры с проводимостью от 4 мк. Они не боятся повышенной частотности, а также волновых помех. Еще стоит отметить, что модели данного типа работают в экономном режиме. Непосредственно триод устанавливается с сопротивлением 40 Ом. Обкладка для него подбирается емкостного типа. Непосредственно преобразователь устанавливается за микропроцессором. Для контроля передачи сигнала припаивается компаратор.

Собираем устройства на 15 В

Собрать на 15 В зарядное устройство Imax B6 своими руками можно на базе дуплексного расширителя. Однако в первую очередь стоит заняться обкладкой. В оригинальной версии она выполнена без пайки. Также стоит отметить, что у модели должно быть установлено два фильтра. Непосредственно напряжение зарядки стоит проверять тестером. После установки микропроцессора припаивается триод.

Указанный элемент разрешается использовать на один переходник. Тепловая отдача у него в среднем равняется 89%. При этом проводимость зависит от многих факторов. Конденсаторы на зарядки устанавливаются с тетродами. Данные элементы способны работать при частоте не ниже 40 Гц. При напряжении 15 В в работу включается блокиратор. Для понижения частотности модификации эксперты рекомендуют применять широкополосные выпрямители.

Самодельные модификации на 15 В

Собирается на 15 В зарядка Imax B6 своими руками без проводникового компаратора. Однако стоит отметить, что проводимость устройства не будет составлять более 5 мк. Основная проблема при сборке может заключаться в тетроде. Довольно сложно в наше время найти оригинальную деталь с емкостью 5 пФ. Однако ее можно заменить линейным аналогом, который является универсальным элементом. Он спокойно функционирует при частоте не более 5 Гц. При сборке модификации стоит постоянно отслеживать напряжение.

При резком повышении данного параметра стоит использовать варикап. При понижении чувствительности можно попробовать заменить фильтры. После установки микропроцессора стоит заняться пайкой транзистора. Если использовать полевые аналоги, то у них низкий коэффициент отдачи. Также стоит отметить, что они не способны работать в экономном режиме. Рабочая температура элементов в среднем равняется 45 градусов. Изоляторы на зарядку целесообразнее устанавливать низкой проводимости.

Устройства с выходом АР

Собрать (с выходом АР) зарядное устройство Imax B6 самому (своими руками) очень просто. Для этого потребуется только один переходник. Он будет соединяться с расширителем. Если рассматривать стандартную схему зарядки, то триод нужно использовать регулируемого типа. Также для сборки потребуется модулятор и микропроцессор. Преобразователь разрешается использовать на две обкладки, а минимальная частота у него должна равняться примерно 50 Гц.

Таким образом, устройством достигается высокая проводимость при малых тепловых потерях. Если верить экспертам, то фильтры можно закреплять только с полупроводниками. Выходное напряжение на расширителе не должно превышать 15 В. При обнаружении проблем с перегревом конденсатора стоит внимательно рассмотреть изолятор. При его повреждении можно попробовать прочистить элемент.

Модели только с выходом АА

Сделать (с входом АА) зарядное устройство Imax B6 своими руками немного сложнее, чем предыдущую модификацию. В данном случае придется подбирать два переходника канального типа. Непосредственно микропроцессор используется на 50 Гц. Для решения проблем с проводимостью стандартно устанавливается компаратор. Преобразователь у модификации должен обладать хорошей чувствительностью. В оригинальной версии он защищается двумя фильтрами, которые установлены по сторонам от него.

Если верить экспертам, то можно использовать операционные аналоги. Эти фильтры не боятся перегревов. Для защиты компаратора также применяется изолятор низкой проводимости. Адаптер целесообразнее использовать на обкладке, а устанавливать его следует за расширителем. Затем стоит припаять варикап. Непосредственно переходники под разъем монтируется возле компаратора. При повышении сопротивления на выходе специалистами предлагается незамедлительно заменить фильтры. Также стоит поверить состояние изолятора, который установлен рядом с микропроцессором.

Устройства с совместимостью Li-ion

Сделать модификацию с совместимостью Li-ion можно на базе открытого компаратора. Он работает при частоте 55 Гц и хорошо справляется с передачей синусоидальных сигналов. Однако начинать сборку модификации стоит стандартно с установки микропроцессора. Только после этого разрешается заняться расширителем, который крепится на обкладке и соединяется с электрической цепью.

Для решения проблем с проводимостью преобразователь линейного типа можно заменить сеточными аналогами. Они дешево стоят и являются вполне компактными. Варикап целесообразнее для зарядки подобрать на магнитной ленте. При обнаружении проблем с чувствительностью на обкладке экспертами рекомендуется проверить работоспособность микропроцессора. Проблему может заключаться только в нем.

Устройства с совместимостью LiPo

Сделать (с совместимостью LiPo) зарядку Imax B6 своими руками довольно просто, но потребуется качественный переходник под модификацию. Микропроцессор устанавливается на обкладке. Многие эксперты рекомендуют использовать стабилизаторы. Они значительно уменьшают риск появления магнитных помех. Также стоит отметить, что они хорошо справляются с импульсными скачками в электрической цепи зарядки. Адаптер на модификацию можно устанавливать за триодом.

Таким образом, понадобится только один изолятор. Фильтры стандартно используются с проводимостью от 4 мк. Если верить экспертам, то особое внимание стоит уделить тетроду, который припаивается за компаратором. Если отрицательное сопротивление резко меняется, нужно протестировать цепь от микропроцессора. Номинальное напряжение должно составлять 13 Вю. При обнаружении проблем с проводимостью всегда стоит проверять динистор.

Зарядки с совместимостью Ni-Cd

Модификации с совместимостью Ni-Cd чаще всего производятся на магнитных модулях. Расширитель в данном случае разрешается использовать на два контакта с проводимостью не более 55 мк. Некоторые эксперты говорят о том, что после установки микропроцессора стоит проверить отрицательное сопротивление. Также важно помнить, что параметр выходного напряжения при перегрузке 3 А не должен превышать 15 В. Обкладки в устройствах разрешается использовать с фильтрами.

В данном случае хорошо подходят переходные модификации низкой чувствительности. При этом изолятор устанавливается за расширителем. При возникновении проблем на обкладке рекомендуется перепроверить проводимость микроконтроллера. В некоторых случаях проблема также может заключаться в фильтре. При незначительном отклонении сопротивления можно попробовать установить компаратор, который будет подавлять все импульсные помехи от блока.

Модификации с совместимостью Pb

Чтобы сделать (с совместимостью Pb) модификацию Imax B6 своими руками, рекомендуется заготовить микроконтроллер на 40 Гц, а также расширитель диодного типа. Специалисты в данном случае не советуют устанавливать выходные изоляторы. В первую очередь они снижают параметр чувствительности зарядки.

Также стоит отметить, что существуют определенные проблемы с преобразованием тока. Стабилизаторы на зарядках чаше всего применяются однопереходного типа. При этом преобразователь стоит устанавливать за выпрямителем. С целью решения проблем фильтра используются трансиверы. Данные устройства должны работать при частоте 33 Гц. Показатель перегрузки на выходе у зарядки не должен превышать 4 А. Транзисторы довольно часто применяются низкоомного типа.

Устройства под батареи NiMH

Чтобы собрать (для батарей NiMH) зарядное устройство Imax B6 своими руками, можно использовать только один переходник с Микроконтроллер в данном случае стандартно устанавливается за расширителем. Некоторые эксперты советуют сразу проверять отрицательное сопротивление для того, чтобы избежать дальнейших проблем перегрузки. Транзистор на зарядку устанавливается регулируемого типа. Непосредственно переходник припаивается на краю компаратора. Всего для модификации потребуется два фильтра небольшой емкости.

Усилитель целесообразнее применять с преобразователем, который сможет работать при напряжении 15 В. Также стоит отметить, что защитить микропроцессор можно только при помощи изоляторов. Триод в оригинальной версии зарядки используется широкополосного типа. Он выдерживает импульсные помехи и хорошо себя показывает в условиях повышенного напряжения.

Применение динамических трансиверов

Как сделать зарядное устройство Imax B6? Отвечая на этот вопрос, стоит отметить, что динамические трансиверы способны работать при частоте не более 35 Гц. Для сборки модификации потребуется в первую очередь проводной расширитель и дополнительно микропроцессор. Фильтры для модели целесообразнее использовать однопереходного типа. Некоторые эксперты говорят о том, что для устройств замечательно подходят резисторные блоки с проводимость от 55 мк. В данном случае стоит замерить выходное напряжение и проверить сопротивление. При сбоях в цепи рекомендуется заменить микропроцессор. Переходник для зарядки разрешается устанавливать с дискретным переключателем. Также стоит отметить, что модули у зарядок используются с лучевыми транзисторами.

Использование триггера на диодах

Как сделать зарядное устройство Imax B6 своими руками? Триггеры на диодах значительно повышают проводимость модели. Для самостоятельной сборки модификации эксперты советуют использовать конденсаторные расширители. Однако в первую очередь на оборудование устанавливается микропроцессор. Также стоит позаботиться о подборе качественного модуля. Для увеличения проводимости модификации рекомендуется применять аналоговые модели.

Расширитель устанавливается на переходнике. Для проверки модификации следует замерить уровень отрицательного сопротивления на проводниках. Данный параметр не должен превышать 45 Ом. Контроллер на зарядку припаивается с катодом. Чувствительность у него должна составлять около 30 мВ. В последнюю очередь проверяется проводимость расширителя. Если этот параметр более 50 мк, то на зарядку придется установить сеточный фильтр. При заниженной чувствительности ставится динистор с переходником.

Зарядка с линейными триггерами

Довольно часто зарядки собираются на линейных триггерах. Данные элементы способны работать при повышенной частотности. У них малая проводимость, а предельное равняется 50 В. Для того чтобы собрать зарядку, рекомендуется установить микропроцессор и подобрать расширитель. Конденсаторы в такие устройства эксперты советуют устанавливать с проходным транзистором. Также стоит отметить, что решить проблемы повышенной частоты всегда можно благодаря канальным фильтрам.

Похожие статьи