Вычисление хэш функции. Криптографическая хеш-функция

23.06.2019

Рассмотренные нами алгоритмы поиска обычно основаны на абстрактной операции сравнения. Из этого ряда существенно выделяется метод распределяющего поиска, описанный в "Таблицы символов и деревья бинарного поиска" , при котором элемент с ключом i хранится в i-ой позиции таблицы, что позволяет обратиться к нему непосредственно. При распределяющем поиске значения ключей используются в качестве индексов массива, а не операндов операции сравнения; сам метод основан на том, что ключи являются различными целыми числами из того же диапазона, что и индексы таблицы. В этой главе мы рассмотрим хеширование ( hashing ) - расширенный вариант распределяющего поиска, применяемый в более типичных приложениях поиска, где ключи не обладают столь удобными свойствами. Конечный результат применения данного подхода совершенно не похож на методы, основанные на сравнении - вместо перемещения по структурам данных словаря с помощью сравнения ключей поиска с ключами в элементах, мы пытаемся обратиться к элементам в таблице непосредственно, выполняя арифметическое преобразование ключей в адреса таблицы.

Алгоритмы поиска, использующие хеширование , состоят из двух отдельных частей. Первый шаг - вычисление хеш-функции ( hash function ), которая преобразует ключ поиска в адрес в таблице. В идеале различные ключи должны были бы отображаться на различные адреса, но часто два или более различных ключа могут дать один и тот же адрес в таблице. Поэтому вторая часть поиска методом хеширования - процесс разрешения коллизий ( collision resolution ), который обрабатывает такие ключи. В одном из методов разрешения конфликтов, который мы рассмотрим в этой главе, используются связные списки, поэтому он находит непосредственное применение в динамических ситуациях, когда трудно заранее предугадать количество ключей поиска. В других двух методах разрешения коллизий достигается высокая производительность поиска, поскольку элементы хранятся в фиксированном массиве. Мы рассмотрим способ усовершенствования этих методов, позволяющий использовать их и в тех случаях, когда нельзя заранее предсказать размеры таблицы.

Хеширование - хороший пример баланса между временем и объемом памяти. Если бы не было ограничения на объем используемой памяти, любой поиск можно было бы выполнить с помощью всего лишь одного обращения к памяти, просто используя ключ в качестве адреса памяти, как при распределяющем поиске. Однако обычно этот идеальный случай недостижим, поскольку для длинных ключей может потребоваться огромный объем памяти. С другой стороны, если бы не было ограничений на время выполнения , можно было бы обойтись минимальным объемом памяти, пользуясь методом последовательного поиска. Хеширование представляет собой способ использования приемлемого объема как памяти, так и времени, и достижения баланса между этими двумя крайними требованиями. В частности, можно поддерживать любой баланс, просто меняя размер таблицы, а не переписывая код и не выбирая другие алгоритмы.

Хеширование - одна из классических задач компьютерных наук: его различные алгоритмы подробно исследованы и находят широкое применение. Мы увидим, что при совсем не жестких допущениях можно надеяться на поддержку операций найти и вставить в таблицах символов с постоянным временем выполнения, независимо от размера таблицы.

Это ожидаемое значение - теоретический оптимум производительности для любой реализации таблицы символов, но хеширование все же не является панацеей по двум основным причинам. Во-первых, время выполнения зависит от длины ключа, которая в реальных приложениях, использующих длинные ключи, может быть значительной. Во-вторых, хеширование не обеспечивает эффективные реализации других операций с таблицами символов, таких, как выбрать или сортировать. В этой главе мы подробно рассмотрим эти и другие вопросы.

Хеш-функции

Прежде всего необходимо решить задачу вычисления хеш-функции, преобразующей ключи в адреса таблицы. Обычно реализация этого арифметического вычисления не представляет сложности, но все же необходимо соблюдать осторожность, чтобы не нарваться на различные малозаметные подводные камни. При наличии таблицы, которая может содержать M элементов, нужна функция, преобразующая ключи в целые числа в диапазоне . Идеальная хеш-функция должна легко вычисляться и быть похожей на случайную функцию: для любых аргументов результаты в некотором смысле должны быть равновероятными.

Хеш-функция зависит от типа ключа. Строго говоря, для каждого возможного вида ключей требуется отдельная хеш-функция. Для повышения эффективности обычно желательно избегать явного преобразования типов, обратившись вместо этого к идее рассмотрения двоичного представления ключей в машинном слове в виде целого числа, которое можно использовать в арифметических вычислениях. Хеширование появилось до языков высокого уровня - на ранних компьютерах было обычным делом рассматривать какое-либо значение то как строковый ключ, то как целое число. В некоторых языках высокого уровня затруднительно создавать программы, которые зависят от представления ключей в конкретном компьютере, поскольку такие программы, по сути, являются машинно-зависимыми, и поэтому их трудно перенести на другой компьютер. Обычно хеш-функции зависят от процесса преобразования ключей в целые числа, поэтому в реализациях хеширования бывает трудно одновременно обеспечить и машинную независимость, и эффективность. Как правило, простые целочисленные ключи или ключи типа с плавающей точкой можно преобразовать с помощью всего одной машинной операции, но строковые ключи и другие типы составных ключей требуют больших затрат и большего внимания к эффективности.

Вероятно, простейшей является ситуация, когда ключами являются числа с плавающей точкой из фиксированного диапазона. Например, если ключи - числа, большие 0 и меньшие 1, их можно просто умножить на M, округлить результат до меньшего целого числа и получить адрес в диапазоне между 0 и M - 1 ; такой пример показан на рис. 14.1 . Если ключи больше s и меньше t, их можно масштабировать, вычтя s и разделив на t-s , в результате чего они попадут в диапазон значений между 0 и 1, а затем умножить на M и получить адрес в таблице.


Рис. 14.1.

Для преобразования чисел с плавающей точкой в диапазоне между 0 и 1 в индексы таблицы, размер которой равен 97, выполняется умножение этих чисел на 97. В данном примере произошло три коллизии: для индексов, равных 17, 53 и 76. Хеш-значения определяются старшими разрядами ключа, младшие разряды не играют никакой роли. Одна из целей разработки хеш-функции - устранение такого дисбаланса, чтобы во время вычисления учитывался каждый разряд.

Если ключи являются w-разрядными целыми числами, их можно преобразовать в числа с плавающей точкой и разделить на 2 w для получения чисел с плавающей точкой в диапазоне между 0 и 1, а затем умножить на M, как в предыдущем абзаце. Если операции с плавающей точкой занимают много времени, а числа не столь велики, чтобы привести к переполнению, этот же результат может быть получен с помощью целочисленных арифметических операций: нужно ключ умножить на M, а затем выполнить сдвиг вправо на w разрядов для деления на 2 w (или, если умножение приводит к переполнению, выполнить сдвиг, а затем умножение). Такие методы бесполезны для хеширования, если только ключи не распределены по диапазону равномерно, поскольку хеш-значение определяется только ведущими цифрами ключа.

Более простой и эффективный метод для w-разрядных целых чисел - один из, пожалуй, наиболее часто используемых методов хеширования - выбор в качестве размера M таблицы простого числа и вычисление остатка от деления к на M, т.е. h(k) = k mod M для любого целочисленного ключа k. Такая функция называется модульной хеш-функцией. Ее очень просто вычислить (k % M в языке C++), и она эффективна для достижения равномерного распределения значений ключей между значениями, меньшими M. Небольшой пример показан на рис. 14.2 .


Рис. 14.2.

В трех правых столбцах показан результат хеширования 16-разрядных ключей, приведенных слева, с помощью следующих функций:

v % 97 (слева)

v % 100 (в центре) и

(int) (a * v) % 100 (справа),

где a = .618033 . Размеры таблицы для этих функций соответственно равны 97, 100 и 100. Значения выглядят случайными (поскольку случайны ключи). Вторая функция (v % 100 ) использует лишь две крайние правые цифры ключей и поэтому для неслучайных ключей может показывать низкую производительность.

Модульное хеширование применимо и к ключам с плавающей точкой. Если ключи принадлежат небольшому диапазону, можно масштабировать их в числа из диапазона между 0 и 1, 2 w для получения w-разрядных целочисленных значений, а затем использовать модульную хеш-функцию. Другой вариант - просто использовать в качестве операнда модульной хеш-функции двоичное представление ключа (если оно доступно).

Модульное хеширование применяется во всех случаях, когда имеется доступ к битам, из которых состоят ключи, независимо от того, являются ли они целыми числами, представленными машинным словом, последовательностью символов, упакованных в машинное слово, или представлены любым другим возможным вариантом. Последовательность случайных символов, упакованная в машинное слово - не совсем то же, что случайные целочисленные ключи, поскольку не все разряды используются для кодирования. Но оба эти типа (и любой другой тип ключа, закодированный так, чтобы уместиться в машинном слове) можно заставить выглядеть случайными индексами в небольшой таблице.

Основная причина выбора в качестве размера M хеш-таблицы простого числа для модульного хеширования показана на рис. 14.3 . В этом примере символьных данных с 7-разрядным кодированием ключ трактуется как число с основанием 128 - по одной цифре для каждого символа в ключе. Слово now соответствует числу 1816567, которое может быть также записано как

поскольку в ASCII-коде символам n, o и w соответствуют числа 1568 = 110 , 1578 = 111 и 1678 = 119 . Выбор размера таблицы M = 64 для этого типа ключа неудачен, поскольку добавление к х значений, кратных 64 (или 128), не меняет значение х mod 64 - для любого ключа значением хеш-функции является значение последних 6 разрядов этого ключа. Безусловно, хорошая хеш-функция должна учитывать все разряды ключа, особенно для символьных ключей. Аналогичные ситуации могут возникать, когда M содержит множитель, являющийся степенью 2. Простейший способ избежать этого - выбрать в качестве M простое число.


Рис. 14.3.

В каждой строке этой таблицы приведены: 3-буквенное слово, представление этого слова в ASCII-коде как 21-битовое число в восьмеричной и десятичной формах и стандартные модульные хеш-функции для размеров таблиц 64 и 31 (два крайних справа столбца). Размер таблицы 64 приводит к нежелательным результатам, поскольку для получения хеш-значения используются только самые правые разряды ключа, а буквы в словах обычного языка распределены неравномерно. Например, всем словам, оканчивающимся на букву у, соответствует хеш-значение 57. И, напротив, простое значение 31 вызывает меньше коллизий в таблице более чем вдвое меньшего размера.

Модульное хеширование очень просто реализовать, за исключением того, что размер таблицы должен быть простым числом. Для некоторых приложений можно довольствоваться небольшим известным простым числом или же поискать в списке известных простых чисел такое, которое близко к требуемому размеру таблицы. Например, числа равные 2 t - 1, являются простыми при t = 2, 3, 5, 7, 13, 17, 19 и 31 (и ни при каких других значениях t < 31 ): это известные простые числа Мерсенна. Чтобы динамически распределить таблицу нужного размера, нужно вычислить простое число, близкое к этому значению. Такое вычисление нетривиально (хотя для этого и существует остроумный алгоритм, который будет рассмотрен в части 5), поэтому на практике обычно используют таблицу заранее вычисленных значений (см. рис. 14.4). Использование модульного хеширования - не единственная причина, по которой размер таблицы стоит сделать простым числом; еще одна причина рассматривается в разделе 14.4.


Рис. 14.4.

Эта таблица наибольших простых чисел, меньших 2 n , для , может использоваться для динамического распределения хеш-таблицы, когда нужно, чтобы размер таблицы был простым числом. Для любого данного положительного значения в охваченном диапазоне эту таблицу можно использовать для определения простого числа, отличающегося от него менее чем в 2 раза.

Другой вариант обработки целочисленных ключей - объединение мультипликативного и модульного методов: нужно умножить ключ на константу в диапазоне между 0 и 1, а затем выполнить деление по модулю M. Другими словами, необходимо использовать функцию . Между значениями , M и эффективным основанием системы счисления ключа существует взаимосвязь, которая теоретически могла бы привести к аномальному поведению, но если использовать произвольное значение a, в реальном приложении вряд ли возникнет какая-либо проблема. Часто в качестве a выбирают значение ф = 0,618033... (золотое сечение).

Изучено множество других вариаций на эту тему, в частности, хеш-функции, которые могут быть реализованы с помощью таких эффективных машинных инструкций, как сдвиг и выделение по маске (см. раздел ссылок).

Во многих приложениях, в которых используются таблицы символов, ключи не являются числами и не обязательно являются короткими; чаще это алфавитно-цифровые строки, которые могут быть весьма длинными. Ну и как вычислить хеш-функцию для такого слова, как averylongkey?

В 7-разрядном ASCII-коде этому слову соответствует 84-разрядное число \begin{align*} 97 \cdot 128^{11} &+ 118 \cdot 128^{10} + 101 \cdot 128^{9} + 114 \cdot 128^{8} + 121 \cdot 128^{7}\\ &+ 108 \cdot 128^{6} + 111 \cdot 128^{5} + 110 \cdot 128^{4} + 103 \cdot 128^{3}\\ &+ 107 \cdot 128^{2} + 101 \cdot 128^{1} + 121 \cdot 128^{0}, \end{align*},

которое слишком велико, чтобы с ним можно было выполнять обычные арифметические функции в большинстве компьютеров. А зачастую требуется обрабатывать и гораздо более длинные ключи.

Чтобы вычислить модульную хеш-функцию для длинных ключей, они преобразуются фрагмент за фрагментом. Можно воспользоваться арифметическими свойствами функции модуля и использовать алгоритм Горнера (см. раздел 4.9 "Абстрактные типы данных"). Этот метод основан на еще одном способе записи чисел, соответствующих ключам. Для рассматриваемого примера запишем следующее выражение: \begin{align*} ((((((((((97 \cdot 128^{11} &+ 118) \cdot 128^{10} + 101) \cdot 128^{9} + 114) \cdot 128^{8} + 121) \cdot 128^{7}\\ &+ 108) \cdot 128^{6} + 111) \cdot 128^{5} + 110) \cdot 128^{4} + 103) \cdot 128^{3}\\ &+ 107) \cdot 128^{2} + 101) \cdot 128^{1} + 121. \end{align*}

То есть десятичное число, соответствующее символьной кодировке строки, можно вычислить при просмотре ее слева направо, умножая накопленное значение на 128, а затем добавляя кодовое значение следующего символа. В случае длинной строки этот способ вычисления в конце концов приведет к числу, большему того, которое вообще можно представить в компьютере. Однако это число и не нужно, поскольку требуется только (небольшой) остаток от его деления на M. Результат можно получить, даже не сохраняя большое накопленное значение, т.к. в любой момент вычисления можно отбросить число, кратное M - при каждом выполнении умножения и сложения нужно хранить только остаток от деления по модулю M. Результат будет таким же, как если бы у нас имелась возможность вычислить длинное число, а затем выполнять деление (см. упражнение 14.10). Это наблюдение ведет к непосредственному арифметическому способу вычисления модульных хеш-функций для длинных строк - см. программу 14.1. В этой программе используется еще одно, последнее ухищрение: вместо основания 128 в ней используется простое число 127. Причина этого изменения рассматривается в следующем абзаце.

Существует множество способов вычисления хеш-функций приблизительно с теми же затратами, что и для модульного хеширования с использованием метода Горнера (одна-две арифметические операции для каждого символа в ключе). Для случайных ключей эти методы практически не отличаются друг от друга, но реальные ключи редко бывают случайными. Возможность ценой небольших затрат придать реальным ключам случайный вид приводит к рассмотрению рандомизированных алгоритмов хеширования, поскольку нам требуются хеш-функции, которые создают случайные индексы таблицы независимо от распределения ключей. Рандомизацию организовать нетрудно, поскольку вовсе не требуется буквально придерживаться определения модульного хеширования - нужно всего лишь, чтобы в вычислении целого числа, меньшего M, использовались все разряды ключа.

Программа 14.1. Хеш-функция для строковых ключей

M = 96 и a = 128 (вверху),

M = 97 и a = 128 (в центре) и

M = 96 и a = 127 (внизу)

Неравномерное распределение в первом случае является результатом неравномерного употребления букв и сохранения неравномерности из-за того, что и размер таблицы, и множитель кратны 32. Два других примера выглядят случайными, поскольку размер таблицы и множитель являются взаимно простыми числами.

В программе 14.1 показан один из способов сделать это: использование простого основания вместо степени 2 и целого числа, соответствующего ASCII-представлению строки. На рис. 14.5 рис. 14.5 показано, как это изменение улучшает распределение для типичных строковых ключей. Теоретически хеш-значения, созданные программой 14.1, могут давать плохие результаты для размеров таблицы, которые кратны 127 (хотя на практике это, скорее всего, будет почти незаметно); для создания рандомизированного алгоритма можно было бы выбрать значение множителя наугад. Еще более эффективный подход - использование случайных значений коэффициентов в вычислении и различных случайных значений для каждой цифры ключа. Такой подход дает рандомизированный алгоритм, называемый универсальным хешированием (universal hashing).

Теоретически идеальная универсальная хеш-функция - это функция, для которой вероятность коллизии между двумя различными ключами в таблице размером M в точности равна 1/M. Можно доказать, что использование в качестве коэффициента а в программе 14.1 не фиксированного произвольного значения, а последовательности случайных различных значений преобразует модульное хеширование в универсальную хеш-функцию. Однако затраты на генерирование нового случайного числа для каждого символа в ключе обычно неприемлемы. На практике можно достичь компромисса, показанного в программе 14.1, не храня массив различных случайных чисел для каждого символа ключа, а варьируя коэффициенты с помощью генерации простой псевдослучайной последовательности.

Подведем итоги: чтобы для реализации абстрактной таблицы символов использовать хеширование, сначала необходимо расширить интерфейс абстрактного типа, включив в него операцию hash, которая отображает ключи на неотрицательные целые числа, меньшие размера таблицы M.

И т. п.). Выбор той или иной хеш-функции определяется спецификой решаемой задачи. Простейшими примерами хеш-функций могут служить контрольная сумма или CRC .

В общем случае однозначного соответствия между исходными данными и хеш-кодом нет. Поэтому существует множество массивов данных, дающих одинаковые хеш-коды - так называемые коллизии . Вероятность возникновения коллизий играет немаловажную роль в оценке «качества» хеш-функций.

Контрольные суммы

Несложные, крайне быстрые и легко реализуемые аппаратно алгоритмы, используемые для защиты от непреднамеренных искажений, в том числе ошибок аппаратуры.

По скорости вычисления в десятки и сотни раз быстрее, чем криптографические хеш-функции, и значительно проще в аппаратной реализации.

Платой за столь высокую скорость является отсутствие криптостойкости - легкая возможность подогнать сообщение под заранее известную сумму. Также обычно разрядность контрольных сумм (типичное число: 32 бита) ниже, чем криптографических хешей (типичные числа: 128, 160 и 256 бит), что означает возможность возникновения непреднамеренных коллизий.

Простейшим случаем такого алгоритма является деление сообщения на 32- или 16- битные слова и их суммирование, что применяется, например, в TCP/IP .

Как правило, к такому алгоритму предъявляются требования отслеживания типичных аппаратных ошибок, таких, как несколько подряд идущих ошибочных бит до заданной длины. Семейство алгоритмов т. н. «циклический избыточных кодов » удовлетворяет этим требованиям. К ним относится, например, CRC32 , применяемый в аппаратуре ZIP.

Криптографические хеш-функции

Среди множества существующих хеш-функций принято выделять криптографически стойкие , применяемые в криптографии . Криптостойкая хеш-функция прежде всего должна обладать стойкостью к коллизиям двух типов:

Применение хеширования

Хеш-функции также используются в некоторых структурах данных - хеш-таблицаx и декартовых деревьях . Требования к хеш-функции в этом случае другие:

  • хорошая перемешиваемость данных
  • быстрый алгоритм вычисления

Сверка данных

В общем случае это применение можно описать, как проверка некоторой информации на идентичность оригиналу, без использования оригинала. Для сверки используется хеш-значение проверяемой информации. Различают два основных направления этого применения:

Проверка на наличие ошибок

Например, контрольная сумма может быть передана по каналу связи вместе с основным текстом. На приёмном конце, контрольная сумма может быть рассчитана заново и её можно сравнить с переданным значением. Если будет обнаружено расхождение, то это значит, что при передаче возникли искажения и можно запросить повтор.

Бытовым аналогом хеширования в данном случае может служить приём, когда при переездах в памяти держат количество мест багажа. Тогда для проверки не нужно вспоминать про каждый чемодан, а достаточно их посчитать. Совпадение будет означать, что ни один чемодан не потерян. То есть, количество мест багажа является его хеш-кодом.

Проверка парольной фразы

В большинстве случаев парольные фразы не хранятся на целевых объектах, хранятся лишь их хеш-значения. Хранить парольные фразы нецелесообразно, так как в случае несанкционированного доступа к файлу с фразами злоумышленник узнает все парольные фразы и сразу сможет ими воспользоваться, а при хранении хеш-значений он узнает лишь хеш-значения, которые не обратимы в исходные данные, в данном случае в парольную фразу. В ходе процедуры аутентификации вычисляется хеш-значение введённой парольной фразы, и сравнивается с сохранённым.

Примером в данном случае могут служить ОС GNU/Linux и Microsoft Windows XP . В них хранятся лишь хеш-значения парольных фраз из учётных записей пользователей.

Ускорение поиска данных

Например, при записи текстовых полей в базе данных может рассчитываться их хеш код и данные могут помещаться в раздел, соответствующий этому хеш-коду. Тогда при поиске данных надо будет сначала вычислить хеш-код текста и сразу станет известно, в каком разделе их надо искать, то есть, искать надо будет не по всей базе, а только по одному её разделу (это сильно ускоряет поиск).

Бытовым аналогом хеширования в данном случае может служить помещение слов в словаре по алфавиту. Первая буква слова является его хеш-кодом, и при поиске мы просматриваем не весь словарь, а только нужную букву.

Список алгоритмов

  • SHA-2 (SHA-224, SHA-256, SHA-384, SHA-512)
  • RIPEMD-160
  • RIPEMD-320
  • Snefru
  • Tiger (Whirlpool
  • IP Internet Checksum (RFC 1071)

Ссылки

Wikimedia Foundation . 2010 .

Смотреть что такое "Хеш-функция" в других словарях:

    хеш-функция - Функция, которая при различных размерах входного значения имеет выход фиксированного размера. хэш функция — Тематики информационные технологии в… … Справочник технического переводчика Википедия

    Хеш таблица это структура данных, реализующая интерфейс ассоциативного массива, а именно, она позволяет хранить пары (ключ, значение) и выполнять три операции: операцию добавления новой пары, операцию поиска и операцию удаления пары по… … Википедия

    Коллизией хеш функции называется два различных входных блока данных и таких, что Коллизии существуют для большинства хеш функций, но для «хороших» хеш функций частота их возникновения близка к теоретическому минимуму. В некоторых частных случаях … Википедия

    Хеширование (иногда хэширование, англ. hashing) преобразование входного массива данных произвольной длины в выходную битовую строку фиксированной длины. Такие преобразования также называются хеш функциями или функциями свёртки, а их результаты… … Википедия

    Tiger хеш функция, разработанная Росом Андерсоном и Эли Бихамом в 1995 году. Tiger был предназначен для особенно быстрого выполнения на 64 разрядных компьютерах. Tiger не имеет патентных ограничений, может использоваться свободно как с… … Википедия

Приложений.

Энциклопедичный YouTube

  • 1 / 5

    Для того, чтобы хеш-функция H считалась криптографически стойкой, она должна удовлетворять трём основным требованиям, на которых основано большинство применений хеш-функций в криптографии:

    Данные требования не являются независимыми:

    • Обратимая функция нестойка к коллизиям первого и второго рода.
    • Функция, нестойкая к коллизиям первого рода, нестойка к коллизиям второго рода; обратное неверно.

    Принципы построения

    Итеративная последовательная схема

    При проектировании хеш-функций на основе итеративной схемы возникает проблема с размером входного потока данных. Размер входного потока данных должен быть кратен (k − n ) . Как правило, перед началом алгоритма данные расширяются неким, заранее известным, способом.

    Помимо однопроходных алгоритмов, существуют многопроходные алгоритмы, в которых ещё больше усиливается лавинный эффект. В этом случае данные сначала повторяются, а потом расширяются до необходимых размеров.

    Сжимающая функция на основе симметричного блочного алгоритма

    В качестве сжимающей функции можно использовать симметричный блочный алгоритм шифрования. Для обеспечения большей безопасности можно использовать в качестве ключа блок данных, предназначенный к хешированию на данной итерации, а результат предыдущей сжимающей функции - в качестве входа. Тогда результатом последней итерации будет выход алгоритма. В таком случае безопасность хеш-функции базируется на безопасности используемого алгоритма.

    Обычно при построении хеш-функции используют более сложную систему. Обобщённая схема симметричного блочного алгоритма шифрования изображена на рис. 2.

    Таким образом, мы получаем 64 варианта построения сжимающей функции. Большинство из них являются либо тривиальными, либо небезопасными. Ниже изображены четыре наиболее безопасные схемы при всех видах атак.

    Применения

    Электронная подпись

    Пусть некий клиент, с именем name , производит аутентификацию по парольной фразе, pass , на некоем сервере. На сервере хранится значение хеш-функции H (pass , R 2) , где R 2 - псевдослучайное, заранее выбранное число. Клиент посылает запрос (name , R 1 ), где R 1 - псевдослучайное, каждый раз новое число. В ответ сервер посылает значение R 2 . Клиент вычисляет значение хеш-функции H (R 1 , H (pass , R 2)) и посылает его на сервер. Сервер также вычисляет значение H (R 1 , H (pass , R 2)) и сверяет его с полученным. Если значения совпадают - аутентификация верна.

    Алгоритмы хэширования строк помогают решить очень много задач. Но у них есть большой недостаток: что чаще всего они не 100%-ны, поскольку есть множество строк, хэши которых совпадают. Другое дело, что в большинстве задач на это можно не обращать внимания, поскольку вероятность совпадения хэшей всё-таки очень мала.

    Определение хэша и его вычисление

    Один из лучших способов определить хэш-функцию от строки S следующий:

    H(S) = S + S * P + S * P^2 + S * P^3 + ... + S[N] * P^N

    где P - некоторое число.

    Разумно выбирать для P простое число, примерно равное количеству символов во входном алфавите. Например, если строки предполаются состоящими только из маленьких латинских букв, то хорошим выбором будет P = 31. Если буквы могут быть и заглавными, и маленькими, то, например, можно P = 53.

    Во всех кусках кода в этой статье будет использоваться P = 31.

    Само значение хэша желательно хранить в самом большом числовом типе - int64, он же long long. Очевидно, что при длине строки порядка 20 символов уже будет происходить переполнение значение. Ключевой момент - что мы не обращаем внимание на эти переполнения, как бы беря хэш по модулю 2^64.

    Пример вычисления хэша, если допустимы только маленькие латинские буквы:

    Const int p = 31; long long hash = 0, p_pow = 1; for (size_t i=0; i

    В большинстве задач имеет смысл сначала вычислить все нужные степени P в каком-либо массиве.

    Пример задачи. Поиск одинаковых строк

    Уже теперь мы в состоянии эффективно решить такую задачу. Дан список строк S, каждая длиной не более M символов. Допустим, требуется найти все повторяющиеся строки и разделить их на группы, чтобы в каждой группе были только одинаковые строки.

    Обычной сортировкой строк мы бы получили алгоритм со сложностью O (N M log N), в то время как используя хэши, мы получим O (N M + N log N).

    Алгоритм. Посчитаем хэш от каждой строки, и отсортируем строки по этому хэшу.

    Vector s (n); // ... считывание строк... // считаем все степени p, допустим, до 10000 - максимальной длины строк const int p = 31; vector p_pow (10000); p_pow = 1; for (size_t i=1; i > hashes (n); for (int i=0; i

    Хэш подстроки и его быстрое вычисление

    Предположим, нам дана строка S, и даны индексы I и J. Требуется найти хэш от подстроки S.

    По определению имеем:

    H = S[I] + S * P + S * P^2 + ... + S[J] * P^(J-I)

    H * P[I] = S[I] * P[I] + ... + S[J] * P[J], H * P[I] = H - H

    Полученное свойство является очень важным.

    Действительно, получается, что, зная только хэши от всех префиксов строки S, мы можем за O (1) получить хэш любой подстроки .

    Единственная возникающая проблема - это то, что нужно уметь делить на P[I]. На самом деле, это не так просто. Поскольку мы вычисляем хэш по модулю 2^64, то для деления на P[I] мы должны найти к нему обратный элемент в поле (например, с помощью Расширенного алгоритма Евклида), и выполнить умножение на этот обратный элемент.

    Впрочем, есть и более простой путь. В большинстве случаев, вместо того чтобы делить хэши на степени P, можно, наоборот, умножать их на эти степени .

    Допустим, даны два хэша: один умноженный на P[I], а другой - на P[J]. Если I < J, то умножим перый хэш на P, иначе же умножим второй хэш на P. Теперь мы привели хэши к одной степени, и можем их спокойно сравнивать.

    Например, код, который вычисляет хэши всех префиксов, а затем за O (1) сравнивает две подстроки:

    String s; int i1, i2, len; // входные данные // считаем все степени p const int p = 31; vector i2 && h1 == h2 * p_pow) cout << "equal"; else cout << "different";

    Применение хэширования

    Вот некоторые типичные применения хэширования:

    • Определение количества различных подстрок за O (N^2 log N) (см. ниже)
    • Определение количества палиндромов внутри строки

    Определение количества различных подстрок

    Пусть дана строка S длиной N, состоящая только из маленьких латинских букв. Требуется найти количество различных подстрок в этой строке.

    Для решения переберём по очереди длину подстроки: L = 1 .. N.

    Для каждого L мы построим массив хэшей подстрок длины L, причём приведём хэши к одной степени, и отсортируем этот массив. Количество различных элементов в этом массиве прибавляем к ответу.

    Реализация:

    String s; // входная строка int n = (int) s.length(); // считаем все степени p const int p = 31; vector p_pow (s.length()); p_pow = 1; for (size_t i=1; iH (s.length()); for (size_t i=0; i hs (n-l+1); for (int i=0; i

    Он же хеш «хэш-функция»



    , он же хеш , это английское слово hash, которое в русском языке чаще всего употребляется в составных словах «хэш-функция» , «хэш-сумма» или «хэш-алгоритм». Давайте попробуем разобраться, что это такое и для чего оно нужно.

    Понятие «хэширование» означает детерминистское (однозначное и точно известное) вычисление набора символов фиксированной длины на основе входных данных произвольной длины. При этом изменение хотя бы одного символа в исходных данных гарантирует (с вероятностью, близкой к 100%), что и полученная фиксированная строка будет иной. Можно сказать, что хэширование это «снятие отпечатка» с большого набора данных.

    Для чего всё это нужно? Давайте рассмотрим пример: вы скачали большой файл (положим, zip-архив) и желаете убедиться, что в нём нет ошибок. Вы можете узнать «хэш-сумму» (тот самый отпечаток) этого файла и сверить его с опубликованным на сайте. Если строки хэш-сумм различаются, то файл однозначно «битый».

    Другой пример: чтобы обезопасить данные пользователей, банк не должен хранить их пароли такими, какие они есть, в своей базе данных. Вместо этого банк хранит хэш-суммы этих паролей и каждый раз при вводе пароля вычисляет его хэш-сумму и сверяет её с хранимой в базе. И тут возникает резонный вопрос о возможных «коллизиях», то есть одинаковых результатах хэширования разных паролей. Хорошая хэш-функция должна сводить коллизии к абсолютному минимуму, а для этого её нужно сделать довольно сложной и запутанной.


    Находится в списке.

Похожие статьи