Топологии сетей. Основные характеристики современных компьютерных сетей

05.09.2019

Термин «топология» имеет достаточно много значений, одно из которых применяется в компьютерном мире для описания сетей. Что такое топология далее и будет рассмотрено. Но, несколько забегая вперед, в самом простом случае это понятие можно рассматривать как описание конфигурации (расположения) компьютеров, подключенных к сети. Иными словами, все сводится к пониманию даже не самих соединений, а геометрических фигур, которые соответствуют каждому типу расположения терминалов.

Что понимается под топологией локальной сети?

Как уже понятно, компьютеры, объединяемые в единые сети, подключаются к ним не хаотично, а в строго определенном порядке. Для описания этой схемы и было введено понимание топологии.

По сути, что такое топология? Карта, схема, диаграмма, карта. Описательный процесс, как уже понятно, в чем-то сродни элементарным знаниям по геометрии. Однако только чисто с геометрической точки зрения этот термин рассматривать нельзя. Поскольку речь идет не только о подключениях, а еще и о передаче информации, в связи с этим следует учитывать и этот фактор.

Основные виды сетей и их топологий

Вообще, единого понятия компьютерной топологии не существует. Принято считать, что может быть несколько видов топологий, в совокупности описывающих ту или иную организацию сети. Собственно, и сети могут быть совершенно разными.

Например, самой простой формой организации соединения нескольких компьютерных терминалов в единое целое можно назвать локальную сеть. Существуют еще промежуточные типы сетей (городские, региональные и т. д.).

Наконец, самыми большим являются глобальные сети, которые затрагивают большие географические регионы и включают в себя все остальные типы сетей, а также компьютеры и телекоммуникационное оборудование.

Но что понимается под топологией локальной сети, как одной из самых простых форм организации соединения нескольких компьютеров между собой, в данном случае?

По признаку описываемых процессов и структур их разделяют на несколько типов:

  • физическая - описание реально существующей структуры расположения компьютеров и узлов сети с учетом связей между ними;
  • логическая - описание прохождения сигнала по сети;
  • информационная - описание движения, направления и перенаправления данных внутри сети;
  • управление обменом - описание принципа использования или передачи прав на пользование сетью.

Топология сети: типы

Теперь несколько слов об общепринятой классификации типов топологий по связям. В контексте того, что такое топология, отдельно стоит отметить еще один тип классификации, описывающий исключительно способ подключения компьютера к сети или принципа его взаимодействия с другими терминалами или основными узлами. В этом случае актуальными становятся понятия полносвязанной и неполносвязанной топологий.

Полносвязанная структура (и это признано во всем мире) является чрезвычайно громоздкой по причине того, что каждый единичный терминал, входящий в единую сетевую структуру, связан со всеми остальными. Неудобство в данном случае заключается в том, что для каждого компьютера необходимо устанавливать дополнительное оборудование связи, а сам терминал должен быть оснащен достаточно большим количеством коммуникационных портов. И как правило, такие структуры если и применяются, то крайне редко.

Неполносвязанная топология в этом плане выглядит намного предпочтительнее, поскольку каждый отдельно взятый терминал не соединяется со всеми остальными компьютерами, а получает или передает информацию через определенные сетевые узлы или обращается напрямую к центральному концентратору или хабу. Яркий тому пример - топология сети «звезда».

Поскольку речь зашла об основных методах объединения терминалов в единое целое (сеть), следует остановиться на основных топологиях всех основных типов, среди которых главными являются «шина», «звезда» и «кольцо», хотя существуют и некоторые смешанные типы.

Топология сети «шина» (bus)

Данный тип объединения терминалов в сеть является достаточно популярным, хотя и имеет весьма серьезные недостатки.

Рассмотреть, что собой представляет топология «шина», можно на простом примере. Представьте себе кабель с несколькими ответвлениями по обе стороны. На конце каждого такого ответвления находится компьютерный терминал. Между собой они напрямую не связаны, а информацию получают и передают через единую магистраль, на обоих концах которой установлены специальные терминаторы, препятствующие отражению сигнала. Это стандартная линейная топология сети.

Преимущество такого соединения состоит в том, что длина основной магистрали существенно уменьшается, и выход единичного терминала из строя на работу сети в целом не оказывает никакого влияния. Главным же недостатком является то, что при нарушениях в работе самой магистрали, неработоспособной оказывается вся сеть. К тому же топология «шина» ограничена в количестве подключаемых рабочих станций и обладает достаточно низкой производительностью ввиду распределения ресурсов между всеми терминалами в сети. Распределение может равномерным или неравномерным.

Топология «звезда» (star)

Топология сети «звезда» в некотором смысле напоминает «шину», с той лишь разницей, что подключение всех терминалов производится не к единой магистрали, а к центральному распределительному устройству (концентратор, хаб).

Как раз через концентратор все компьютеры могут взаимодействовать между собой. Информация передается с хаба на все устройства, но принимается, только теми, которым она предназначается. К преимуществам такого подключения относят возможность централизованного управления всеми терминалами сети, а также подключение новых. Однако, как и в случае с «шиной», выход из строя центрального коммутирующего устройства чреват последствиями для всей сети.

Топология «кольцо» (ring)

Наконец, перед нами еще один тип соединения - кольцевая топология сети. Как, наверное, уже понятно из названия, подключение компьютеров осуществляется последовательно от одного к другому через промежуточные узлы, в результате чего и образуется замкнутый круг (естественно, круг в данном случае - понятие условное).

При передаче информация из начальной точки проходит через все терминалы, которые стоят перед конечным получателем. Но распознавание конечного бенефициара производится на основе маркерного доступа. То есть информацию получает только помеченный в информационном потоке терминал. Такая схема практически нигде не используется в силу того, что выход из строя одного компьютера автоматически влечет за собой нарушение в работе всей сети.

Ячеистая и смешанная топология

Этот тип подключений можно получить, если убрать из вышеприведенных соединений некоторые связи или добавить их дополнительно. В большинстве случаев такая схема используется в крупных сетях.

В связи с этим можно определить несколько основных производных. Самыми распространенными считаются схемы типа «двойное кольцо», «дерево», «решетка», «снежинка», «сеть Клоза» и т. д. Как можно видеть даже из названий, все это вариации на тему основных видов соединений, которые и взяты за основу.

Есть еще и смешанный тип топологии, который может объединять в себе несколько других (подсети), сгруппированных по каким-то характерным признакам.

Заключение

Теперь уже, наверное, понятно, что такое топология. Если сделать некий общий итог, данное понятие представляет собой описание способов соединения компьютеров в сети и взаимодействия между ними. Как это производится, зависит исключительно от метода объединения терминалов в одно целое. И сказать, что сегодня можно выделить какой-то один универсальный вариант подключения, нельзя. В каждом конкретном случае и в зависимости от нужд может использоваться тот или иной тип подключений. Но в локальных сетях, если говорить именно о них, наиболее распространенной является схема «звезда», хотя и «шина» все еще используется достаточно широко.

Остается добавить, что в можно встретить еще понятия централизации и децентрализации, но они большей частью связаны не с подключениями, а с системой управления сетевыми терминалами и осуществлением контроля над ними. Централизация явно выражена в подключениях типа «звезда», но для этого типа применима и децентрализация, обеспечивающая ввод дополнительных элементов с целью повышения надежности сети при выходе центрального коммутатора из строя. Достаточно эффективной разработкой в этом плане является схема «гиперкуб», однако она весьма сложна в разработке.

Лента Мебиуса, интересна тем, что имеет только одну поверхность; такие формы являются объектом изучения топологии. Топология (греч. – место, logos – наука) – раздел математики, который приближен к геометрии. В то время как алгебра начинается с рассматривания операций, геометрия – фигур, а математический анализ – функций; фундаментальное понятие топологии – непрерывность. Непрерывное отображение деформирует пространство, не разрывая его, при этом отдельные точки или части пространства могут склеиться (соединиться), но близкие точки остаются близкими. В отличие от геометрии, где рассматриваются преимущественно метрические характеристики, такие как длина, угол и площадь, в топологии эти характеристики считаются несущественными на фоне изучаются такие фундаментальные свойства фигуры, как связность (количество кусков, дыр и т.д.) или возможность непрерывно здеформуваты ее к сферы и обратно (это возможно для поверхности куба, но невозможно для поверхности тора).
Аксиоматика топологии построена на принципах теории множеств, но ведущую роль в исследованиях по современной топологии играют прежде алгебраические и геометрические методы. Объектами исследования топологии является топологические пространства, совместное обобщение таких структур как граф, поверхность в трехмерном пространстве и множество Кантора и отображения между ними. При этом исследуются свойства топологических пространств как в малом (локальные), так и в целом (глобальные). Среди разнообразных направлений топологии отметим приближенную к теории множеств общую топологию, которая изучает такие общие свойства абстрактных топологических пространств как компактность или связность, и алгебраическую топологию, которая пытается описать топологические пространства с помощью их алгебраических инвариантов, например чисел Бетти и фундаментальной группы. Геометрическая топология изучает топологические пространства геометрического происхождения, узлы в трехмерном евклидовом пространстве и трехмерные многообразия. К геометрической топологии принадлежит одна из крупнейших и известнейших математических проблем, гипотеза Пуанкаре, которую наконец (2003 г.) доказал российский математик Григорий Перельман.
Наряду с алгеброй и геометрией, топологические методы широко используются в функциональном анализе, теории динамических систем и современной математической физике.
Срок топология используется для обозначения как математической дисциплины, так и для определенной математической структуры, смотри топологическое пространство.
Семь мостов Кенигсберга – первая задача топологии, которая была рассмотрена Л. Эйлером. Начальные исследования по топологии принадлежат Леонарду Эйлеру. Считается, что статья Эйлера «Solutio problematis ad geometriam situs pertinentis» («Решение вопроса, связанного с геометрией положения»), напечатанная в 1736 г., содержала первые результаты по топологии. Новая точка зрения, предложенная Эйлером, заключалась в том, чтобы во время изучения определенных вопросов по геометрии отказаться от рассмотрения метрических свойств геометрических фигур, таких как длина и площадь. Так, в 1750 г. в письме Гольдбаха Эйлер сообщил о своей славной формулу

В – Р + Г = 2,

Которая связывает число вершин В, ребер Р и граней Г выпуклого многогранника.
В 1895 г. Анри Пуанкаре опубликовал цикл статей Analysis Situs, в которых заложил основы алгебраической топологии. Совершенствуя предварительные исследования связности топологических пространств, Пуанкаре ввел понятие гомотопии и гомологии и предоставил определение фундаментальной группы.
В определенном смысле, работы Пуанкаре подвели итог исследованиям Эйлера, Люилье, Гаусса, Римана, листингу, Мебиуса, Жордана, Клейна, Бетти и др. с комбинаторной и геометрической топологии. Важной особенностью почти всех этих работ, включая Пуанкаре, был их интуитивный характер. Вместе с существенным количеством примеров топологических объектов и результатов для их свойств, новой области математики хватало ли не самого главного: строгого определения объектов ее исследования, то есть, современным языком, топологических пространств.
Осознание важности топологической парадигмы в математическом анализе, связанной со строгим обоснованием границ, непрерывности и компактности в работах Больцано, Коши, Вейерштрасса, Кантора и др. привело к аксиоматического определения основных понятий топологии и развития общей топологии, а вместе с ней и топологии векторных пространств, функционального анализа. Таким образом, проблемы анализа образуют вторых, во многом, независимое от вопросов геометрии, источник для развития топологии. Следует отметить что до сих пор пути развития общего и алгебраической топологии почти не пересекаются.
Общепризнанная ныне аксиоматика топологии основывается на теории множеств, которая была образована Георгом Кантором во второй половине 19-го века. В 1872 г. Кантор предоставил определение открытых и замкнутых множеств действительных чисел. Интересно отметить, что Кантор поступил в некоторых идей теории множеств, например, множества Кантора, в пределах своих исследований по рядов Фурье. Систематизируя работы Георга Кантора, Вито Вольтерры, Чезаре Арцела, Жака Адамара и др., в 1906 году Морис Фреше обозначил понятие метрического пространства. Чуть позже было осознано, что метрическое пространство – это частный случай более общего понятия, топологического пространства. В 1914 г. Феликс Хаусдорф использовал термин «топологическое пространство» в близком к современному смысле (рассмотренные им топологические пространства сейчас называют хаусдорфовой).
Происхождение названия
Собственно термин «топология» («topologie» на немецком языке) впервые появился лишь в 1847 г. в статье Листинг Vorstudien zur Topologie. Однако к тому времени Листинг уже более 10 лет использовал этот термин в своих переписки. «Topology», английская форма срока, была предложена в 1883 в журнале Nature для того чтобы различить качественную геометрию от геометрии обычной, в которой превалируют количественные соотношения. Слово topologist – т.е. тополог, в смысле «специалист по топологии" было впервые использовано в 1905 в журнале Spectator. Благодаря влиянию упомянутых выше статей Пуанкаре, топология долгое время была известна еще под названием Analysis Situs (лат. анализ места).
Топологические пространства естественно появляются во многих разделах математики. Это делает топологию чрезвычайно универсальным инструментом для математиков Общая топология определяет и изучает такие свойства пространств и отображений между ними как связность, компактность и непрерывность. Алгебраическая топология использует объекты абстрактной алгебры, а особенно теории категорий для изучение топологических пространств и отображений между ними.
Чтобы понять, для чего нужна топология, можно привести такой пример: в некоторых геометрических задачах не так важно знать точную форму объектов, как знать как они расположены. Если рассмотреть квадрат и круг (контуры), казалось бы такие разные фигуры, можно заметить несколько общего: оба объекта являются одномерными и оба разделяют пространство на две части – внутренность и внешность.
Темой одной из самых статей (автор – Леонард Эйлер) по топологии была демонстрация того, что невозможно найти путь в Кенигсберге (ныне Калининград), который бы пролег через каждый из семи городских мостов ровно по одному разу. Этот результат не зависел ни от длины мостов, ни от расстояния между ними. Влияли только свойства связности: какие мосты связывают которые острова или берега. Эта задача Семи мостов Кенигсберга показательна при изучении математики, также она стала основополагающей в разделе математики, называется теория графов.
Похожей является теорема мохнатой шара с алгебраической топологии, в которой говорится следующее: «невозможно причесать волосы на шаре в одну сторону». Этот факт является достаточно наглядным и многие сразу находят понимание, однако ее формальную запись для многих не является очевидным: не существует ненулевого непрерывного поля касательных векторов на сфере. Как и с кенигсбергских мостами, результат не зависит от точной формы сферы; утверждение выполняется и для грушевидных форм, даже для более общих – каплевидных форм (с некоторыми условиями на гладкость поверхности), при общей условии отсутствия дыр.
Так что для того, чтобы решать подобные задачи, которые в действительности не нуждаются сведений о точной форму объектов, нужно четко знать, от каких же свойств зависит решение таких задач. Сразу возникает потребность в определении топологической эквивалентности. Невозможность пройти каждым из мостов по одному разу относится также к любому расположения мостов, эквивалентного Кенигсбергского; теорема мохнатой шара может быть применена к любому объекту топологически эквивалентного шара.
Непрерывная деформация кофейной чашки в баранку (тор). Такое преобразование называют гомотопии. Фазы преобразования чашки в баранку Интуитивно, два топологических пространства эквивалентны (гомеоморфными), если один может быть преобразован в другой без отрезков или склеек. Традиционным есть такая шутка: тополог не может отличить чашку кофе, из которой она пьет, от бублика, которую он ест, так как достаточно гибкий баранку можно легко превратить в форму чашки, создав углубления и увеличивая его, одновременно уменьшая отверстие до размеров ручки.
В качестве простого исходной задачи можно классифицировать буквы латинского алфавита в терминах топологической эквивалентности. (Будем считать, что толщина линий, из которых составлен буквы ненулевая) В большинстве шрифтов что сейчас применяются существует класс букв ровно с одной дыркой {a, b, d, e, o, p, q}, класс букв без дырок: {c, f, h, k, l, m, n, r, s, t, u, v, w, x, y, z}, и класс букв, состоящих из двух кусков: {i, j}. Буква «g» может принадлежать либо классу букв с одной дыркой, или (в некоторых шрифтах) это может быть буква с двумя дырками (если ее хвостик был заперт). Для более сложного примера можно рассмотреть случай нулевой толщины линий; можно рассмотреть различные топологии в зависимости от того, какой шрифт выбрать. Топология букв имеет свое практическое применение в трафаретной типографии: например, шрифт Braggadocio может быть вырезан из плоскости, не распавшись после этого.
Топология – одна из наиболее центрально-расположенных математических дисциплин, в смысле численности связей и степени взаимного влияния с другими разделами математики. Приведем следующие примеры.
Математическая сообщество высоко отметила вклад топологий к развитию математики. За период с 1936 по 2006 г., одна из высших наград в математике, Медаль Филдса, была присуждена 48 математикам, 9 из них за исследования именно в топологии. В работах еще нескольких из лауреатов топологические методы играли важную роль.
Трем из них премия была присуждена за решение гипотезы Пуанкаре: Григорию Перельману за доведение оригинальной гипотезы относительно трехмерной сферы и Майклу Фридману и Стивену Смейла – за решение аналогичного вопроса в четырех (Фридман) и пяти и более измерениях (Смейл). Интересно, что еще две с Филдсовской премий была присуждена за результаты о сферах: Джону Милнору за открытие 28 дифференцируемых структур на семивимирний сфере, и Жану-Пьеру Серра за разработку методов вычисления гомотопических групп сфер. Таким образом, пять из сорока восьми Филдсовской премий получили исследователи сфер!

Топология - довольно красивое, звучное слово, очень популярное в некоторых нематематических кругах, заинтересовало меня еще в 9 классе. Точного представления конечно же я не имел, тем не менее, подозревал, что все завязано на геометрии.

Слова и текст подбирались таким образом, чтобы все было «интуитивно ясно». Как следствие - полное отсутствие математической грамоты.

Что такое топология? Сразу скажу, что есть, по крайней мере, два термина «Топология» - один из них просто обозначает некоторую математическую структуру, второй - несет за собой целую науку. Наука эта заключается в изучение свойств предмета, которые не изменятся при его деформации.

Наглядный пример 1. Чашка бублик.

Мы видим, что кружка непрерывными деформациями переходит в бублик (в простонародье «двухмерный тор»). Было замечено, что топология изучает, то что остается неизменным при таких деформациях. В данном случае неизменным остается количество «дырок» в предмете - она одна. Пока оставим как есть, чуть позже разберемся наверняка)

Наглядный пример 2. Топологический человек.

Непрерывными деформациями человек (см. рисунок) может распутать пальцы - факт. Не сразу очевидно, но можно догадаться. А если же наш топологический человек предусмотрительно надел часы на одну руку, то наша задача станет невыполнимой.

Давайте внесем ясности

Итак, надеюсь парочка примеров привнесла некоторой наглядности к происходящему.
Попробуем формализовать это все по-детски.
Будем считать что мы работаем с пластилиновыми фигурками, и пластилин можем растягивать, сжимать, при этом запрещены склеивания разных точек и разрывы . Гомеоморфными называются фигуры, которые переводятся друг в друга непрерывными деформациями описанными чуть ранее.

Очень полезный случай - сфера с ручками. У сферы может быть 0 ручек - тогда это просто сфера, может быть одна - тогда это бублик (в простонародье «двухмерный тор») и т.д.
Так почему же сфера с ручками - обособляется среди других фигур? Все очень просто - любая фигура гомеоморфна сфере с некоторым количеством ручек. То есть по сути у нас больше ничего нет О_о Любой объемный предмет устроен как сфера с некоторым количеством ручек. Будь то чашка, ложка, вилка (ложка=вилка!), компьютерная мышь, человек.

Вот такая вот достаточно содержательная теорема доказана. Не нами и не сейчас. Точнее она доказана для гораздо более общей ситуации. Поясню: мы ограничивались рассмотрением фигур слепленных из пластилина и без полостей. Это влечет следующие неприятности:
1) мы никак не можем получить неориентируемую поверхность (Бутылка Клейна, Лента Мёбиуса, проективная плоскость),
2)ограничиваемся двухмерными поверхностями (н/п: сфера - двухмерная поверхность),
3)не можем получить поверхности, фигуры простирающиеся на бесконечность (можно конечно такое представить, но никакого пластилина не хватит).

Лента Мёбиуса

Бутылка Клейна

Топология компьютерных сетей

На скорость передачи данных в сети, на надежность обслуживания запросов клиентов, на устойчивость сети к отказам оборудования, на стоимость создания и эксплуатации сети значительное влияние оказывает ее топология.

Под топологией компьютерной сети понимается способ соединения ее отдельных компонентов (компьютеров, серверов, принтеров и т.д.). Различают следующие основные топологии:

· топология типа звезда;

· топология типа кольцо;

· топология типа общая шина;

· древовидная топология;

· полносвязная сеть.

Рассмотрим данные топологии сетей.

Топология типа звезда . При использовании топологии типа звезда информация между клиентами сети передается через единый центральный узел (Рис. 11). В качестве центрального узла может выступать сервер или специальное устройство – концентратор (Hub).

Рис. 11. Топология типа звезда

В топологии звезда могут использоваться активные и пассивные концентраторы. Активные концентраторы принимают и усиливают передаваемые сигналы. Пассивные концентраторы пропускают через себя сигналы, не усиливая их. Пассивные концентраторы не требуют подключения к источнику питания.

Преимущества топологии звезда состоят в следующем:

1. Высокое быстродействие сети, так как общая производительность сети зависит только от производительности центрального узла.

2. Отсутствие столкновения передаваемых данных, так как данные между рабочей станцией и сервером передаются по отдельному каналу, не затрагивая другие компьютеры.

Однако помимо достоинств у данной топологии есть и недостатки:

1. Низкая надежность, так как надежность всей сети определяется надежностью центрального узла. Если центральный узел (сервер или концентратор) выйдет из строя, то работа всей сети прекратится.

2. Высокие затраты на подключение компьютеров, так как к каждому новому абоненту необходимо ввести отдельную линию.

3. Отсутствие возможности выбора различных маршрутов для установления связи между абонентами.

Данная топология в настоящее время является самой распространенной.

Топология типа кольцо . При топологии кольцо все компьютеры подключаются к кабелю, замкнутому в кольцо. Сигналы передаются по кольцу в одном направлении и проходят через каждый компьютер (рис. 12).

Рис. 12. Топология типа кольцо

Передача информации в данной сети происходит следующим образом. Маркер (специальный сигнал) последовательно, от одного компьютера к другому, передается до тех пор, пока его не получит тот, который хочет передать данные. Получив маркер, компьютер создает так называемый пакет, который используется для передачи данных. В пакет помещается адрес получателя и данные, а затем он отправляется по кольцу. Пакет проходит через каждый компьютер, пока не окажется у того, чей адрес совпадает с адресом получателя. После этого принимающий компьютер посылает источнику информации подтверждение факта получения пакета. Получив подтверждение, передающий компьютер создает новый маркер и возвращает его в сеть.

Преимущества топологии типа кольцо состоят в следующем:

1. Пересылка сообщений является очень эффективной, т.к. можно отправлять несколько сообщений друг за другом по кольцу. Т.е. компьютер, отправив первое сообщение, может отправлять за ним следующее сообщение, не дожидаясь, когда первое достигнет адресата.

2. Протяженность сети может быть значительной. Т.е. компьютеры могут подключаться к друг к другу на значительных расстояниях, без использования специальных усилителей сигнала.

3. Отсутствие коллизий (см. тему №3, раздел 2) и столкновения данных, так как передачу в каждый момент времени ведет только один компьютер.

К недостаткам данной топологии относятся:

1. Низкая надежность сети, так как отказ любого компьютера влечет за собой отказ всей системы.

2. Для подключения нового клиента необходимо прервать работу в сети.

3. При большом количестве клиентов скорость работы в сети замедляется, так как вся информация проходит через каждый компьютер, а их возможности ограничены.

4. Общая производительность сети определяется производи­тельностью самого медленного компьютера .

Данная топология выигрывает в том случае, если в организации создается система распределенных центров обработки информации, расположенных на значительном расстоянии друг от друга.

Топология типа общая шина . При шинной топологии все клиенты подключены к общему каналу передачи данных (рис. 13). При этом они могут непосредственно вступать в контакт с любым компьютером, имеющимся в сети.

Рис.13. Топология типа общая шина

Передача информациипроисходит следующим образом. Данные в виде электрических сигналов передаются всем компьютерам сети. Однако информацию принимает только тот, адрес которого соответствует адресу получателя. Причем в каждый момент времени только один компьютер может вести передачу.

Преимущества топологии общая шина:

1. Вся информация находится в сети и доступна каждому компьютеру. Т.е. с любого персонального компьютера можно получить доступ к информации, которая храниться на любом другом компьютере.

2. Рабочие станции можно подключать независимо друг от друга. Т.е. при подключении нового абонента нет необходимости останавливать передачу информации в сети.

3. Построение сетей на основе топологии общая шина обходится дешевле, так как отсутствуют затраты на прокладку дополнительных линий при подключении нового клиента.

4. Сеть обладает высокой надежностью, т.к. работоспособность сети не зависит от работоспособности отдельных компьютеров.

Последнее преимущество определяется тем, что шина является пассивной топологией. Т.е. компьютеры только принимают передаваемые данные, но не перемещают их от отправителя к получателю. Поэтому, если один из компьютеров выйдет из строя, это не скажется на работе остальных.

К недостаткам топологии типа общая шина относятся:

1. Низкая скорость передачи данных, так как вся информация циркулирует по одному каналу (шине).

2. Быстродействие сети зависит от числа подключенных компьютеров. Чем больше компьютеров подключено к сети, тем больше загружена шина и тем медленнее идет передача информации от одного компьютера к другому.

3. Для сетей, построенных на основе данной топологии, характерна низкая безопасность, так как информация на каждом компьютере может быть доступна с любого другого компьютера.

Древовидная топология . В сетях с древовидной топологией компьютеры непосредственно связаны с центральными узлами сети – серверами (Рис. 14).



Рис.14. Древовидная топология

Древовидная топология представляет собой комбинацию топологии типа звезда и топологии типа общая шина. Поэтому ей в основном присущи те же преимущества и недостатки, которые были указаны для данных топологий.

Полносвязная вычислительная сеть . В полносвязной сети каждый компьютер соединен со всеми другими компьютерами отдельными линиями (рис. 15).

Рис.15. Полносвязная вычислительная сеть

Преимущества полносвязной сети:

1. Высокая надежность, так как при отказе любого канала связи будет найден обходной путь для передачи информации.

2. Высокое быстродействие, так как информация между компьютерами передается по отдельным линиям.

Недостатки данной топологии:

1. Данная топология требует большого числа соединительных линий, т.е. стоимость создания подобной сети очень высокая.

2. Трудность построения сети при большом количестве компьютеров, так как от каждого компьютера к остальным необходимо прокладывать отдельные линии.

Топология полносвязной сети обычно применяется для малых сетей с небольшим количеством компьютеров, которые работают с полной загрузкой каналов связи.

Для крупных вычислительных сетей (глобальных или региональных) обычно применяется комбинация различных топологией для разных участков.

Модели ЛВС

Существует две модели локальных вычислительных сетей:

· одноранговая сеть;

· сеть типа клиент-сервер.

В одноранговой сети все компьютеры равноправны между собой. При этом вся информация в системе распределена между отдельными компьютерами. Любой пользователь может разрешить или запретить доступ к своим данным. В таких сетях на всех компьютерах устанавливаются однотипные операционные системы (ОС), которые предоставляет всем компьютерам в сети потенциально равные возможности.

Достоинстваданной модели:

1. Простота реализации. Для реализации данной сети достаточно наличия в компьютерах сетевых адаптеров и кабеля, которых их соединит.

2. Низкая стоимость создания сети. Так как отсутствуют затраты, связанные с покупкой дорогостоящего сервера, дорогой сетевой операционной системы и т.д.

Недостатки модели:

1. Низкое быстродействие при сетевых запросах. Рабочая станция всегда обрабатывает сетевые запросы медленнее, чем специализированный компьютер – сервер. Помимо этого на рабочей станции всегда выполняются различные задачи (набор текста, создание рисунков, математические расчеты и др.), которые замедляют ответы на сетевые запросы.

2. Отсутствие единой информационной базы, так как вся информация распределена по отдельным компьютерам. При этом приходиться обращаться к нескольким компьютерам для получения необходимой информации.

3. Отсутствие единой системы безопасности информации. Каждый персональный компьютер защищает свою информацию посредством операционной системы. Однако операционные системы персональных компьютеров, как правило, обладают меньшей защищенностью, чем сетевые операционные системы для серверов. Поэтому "взломать" такую сеть значительно проще.

4. Зависимость наличия в системе информации от состояния компьютера. Если какой-то компьютер будет выключен, то информация, хранимая на нем, будет недоступна другим пользователям.

В сети типа клиент-сервер имеется один или несколько главных компьютеров - серверов. В таких системах всей основной информацией управляют серверы.

Сеть типа клиент-сервер является функционально не симметричной: в ней используются два типа компьютеров - одни ориентированны на выполнение серверных функций и работают под управлением специализированных серверных ОС, а другие - выполняют клиентские функции и работают под управлением обычных ОС. Функциональная несимметричность вызывает и несимметричность аппаратуры - для выделенных серверов используются более мощные компьютеры с большими объемами оперативной и внешней памяти.

Достоинствами данной модели являются:

1. Высокое быстродействие сети, так как сервер быстро обрабатывает сетевые запросы и не загружен другими задачами.

2. Наличие единой информационной базы и системы безопасности. Взломать сервер можно, но это значительно сложнее, чем рабочую станцию.

3. Простота управления все сетью. Так как управление сетью заключается в основном в управлении только сервера.

Недостаткимодели:

1. Высокая стоимость реализации, так как требуется покупать дорогостоящий сервер и сетевую операционную систему для сервера.

2. Зависимость быстродействия сети от сервера. Если сервер будет не достаточно мощным, то работа в сети может сильно замедляться.

3. Для правильной работы сети требуется наличие дополнительного обслуживающего персонала, т.е. в организации должна быть введена должность администратор сети.

Локальная сеть - важный элемент любого современного предприятия, без которого невозможно добиться максимальной производительности труда. Однако чтобы использовать возможности сетей на полную мощность, необходимо их правильно настроить, учитывая также и то, что расположение подсоединенных компьютеров будет влиять на производительность ЛВС.

Понятие топологии

Топология локальных компьютерных сетей - это месторасположение рабочих станций и узлов относительно друг друга и варианты их соединения. Фактически это архитектура ЛВС. Размещение компьютеров определяет технические характеристики сети, и выбор любого вида топологии повлияет на:

  • Разновидности и характеристики сетевого оборудования.
  • Надежность и возможность масштабирования ЛВС.
  • Способ управления локальной сетью.

Таких вариантов расположения рабочих узлов и способов их соединения много, и количество их увеличивается прямо пропорционально повышению числа подсоединенных компьютеров. Основные топологии локальных сетей - это "звезда", "шина" и "кольцо".

Факторы, которые следует учесть при выборе топологии

До того как окончательно определиться с выбором топологии, необходимо учесть несколько особенностей, влияющих на работоспособность сети. Опираясь на них, можно подобрать наиболее подходящую топологию, анализируя достоинства и недостатки каждой из них и соотнеся эти данные с имеющимися для монтажа условиями.

  • Работоспособность и исправность каждой из рабочих станций, подсоединенных к ЛВС. Некоторые виды топологии локальной сети целиком зависят от этого.
  • Исправность оборудования (маршрутизаторов, адаптеров и т. д.). Поломка сетевого оборудования может как полностью нарушить работу ЛВС, так и остановить обмен информацией с одним компьютером.
  • Надежность используемого кабеля. Повреждение его нарушает передачу и прием данных по всей ЛВС или же по одному ее сегменту.
  • Ограничение длины кабеля. Этот фактор также важен при выборе топологии. Если кабеля в наличии немного, можно выбрать такой способ расположения, при котором его потребуется меньше.

О топологии «звезда»

Этот вид расположения рабочих станций имеет выделенный центр - сервер, к которому подсоединены все остальные компьютеры. Именно через сервер происходят процессы обмена данными. Поэтому оборудование его должно быть более сложным.

Достоинства:

  • Топология локальных сетей "звезда" выгодно отличается от других полным отсутствием конфликтов в ЛВС - это достигается за счет централизованного управления.
  • Поломка одного из узлов или повреждение кабеля не окажет никакого влияния на сеть в целом.
  • Наличие только двух абонентов, основного и периферийного, позволяет упростить сетевое оборудование.
  • Скопление точек подключения в небольшом радиусе упрощает процесс контроля сети, а также позволяет повысить ее безопасность путем ограничения доступа посторонних.

Недостатки:

  • Такая локальная сеть в случае отказа центрального сервера полностью становится неработоспособной.
  • Стоимость "звезды" выше, чем остальных топологий, поскольку кабеля требуется гораздо больше.

Топология «шина»: просто и дешево

В этом способе соединения все рабочие станции подключены к единственной линии - коаксиальному кабелю, а данные от одного абонента отсылаются остальным в режиме полудуплексного обмена. Топологии локальных сетей подобного вида предполагают наличие на каждом конце шины специального терминатора, без которого сигнал искажается.

Достоинства:

  • Все компьютеры равноправны.
  • Возможность легкого масштабирования сети даже во время ее работы.
  • Выход из строя одного узла не оказывает влияния на остальные.
  • Расход кабеля существенно уменьшен.

Недостатки:

  • Недостаточная надежность сети из-за проблем с разъемами кабеля.
  • Маленькая производительность, обусловленная разделением канала между всеми абонентами.
  • Сложность управления и обнаружения неисправностей за счет параллельно включенных адаптеров.
  • Длина линии связи ограничена, потому эти виды топологии локальной сети применяют только для небольшого количества компьютеров.

Характеристики топологии «кольцо»

Такой вид связи предполагает соединение рабочего узла с двумя другими, от одного из них принимаются данные, а второму передаются. Главной же особенностью этой топологии является то, что каждый терминал выступает в роли ретранслятора, исключая возможность затухания сигнала в ЛВС.

Достоинства:

  • Быстрое создание и настройка этой топологии локальных сетей.
  • Легкое масштабирование, требующее, однако, прекращения работы сети на время установки нового узла.
  • Большое количество возможных абонентов.
  • Устойчивость к перегрузкам и отсутствие сетевых конфликтов.
  • Возможность увеличения сети до огромных размеров за счет ретрансляции сигнала между компьютерами.

Недостатки:

  • Ненадежность сети в целом.
  • Отсутствие устойчивости к повреждениям кабеля, поэтому обычно предусматривается наличие параллельной резервной линии.
  • Большой расход кабеля.

Типы локальных сетей

Выбор топологии локальных сетей также следует производить, основываясь на имеющемся типе ЛВС. Сеть может быть представлена двумя моделями: одноранговой и иерархической. Они не очень отличаются функционально, что позволяет при необходимости переходить от одной из них к другой. Однако несколько различий между ними все же есть.

Что касается одноранговой модели, ее применение рекомендуется в ситуациях, когда возможность организации большой сети отсутствует, но создание какой-либо системы связи все же необходимо. Рекомендуется создавать ее только для небольшого числа компьютеров. Связь с централизованным управлением обычно применяется на различных предприятиях для контроля рабочих станций.

Одноранговая сеть

Этот тип ЛВС подразумевает равноправие каждой рабочей станции, распределяя данные между ними. Доступ к информации, хранящейся на узле, может быть разрешен либо запрещен его пользователем. Как правило, в таких случаях топология локальных компьютерных сетей «шина» будет наиболее подходящей.

Одноранговая сеть подразумевает доступность ресурсов рабочей станции остальным пользователям. Это означает возможность редактирования документа одного компьютера при работе за другим, удаленной распечатки и запуска приложений.

Достоинства однорангового типа ЛВС:

  • Легкость реализации, монтажа и обслуживания.
  • Небольшие финансовые затраты. Такая модель исключает надобность в покупке дорогого сервера.

Недостатки:

  • Быстродействие сети уменьшается пропорционально увеличению количества подсоединенных рабочих узлов.
  • Отсутствует единая система безопасности.
  • Доступность информации: при выключении компьютера данные, находящиеся в нем, станут недоступными для остальных.
  • Нет единой информационной базы.

Иерархическая модель

Наиболее часто используемые топологии локальных сетей основаны именно на этом типе ЛВС. Его еще называют «клиент-сервер». Суть данной модели состоит в том, что при наличии некоторого количества абонентов имеется один главный элемент - сервер. Этот управляющий компьютер хранит все данные и занимается их обработкой.

Достоинства:

  • Отличное быстродействие сети.
  • Единая надежная система безопасности.
  • Одна, общая для всех, информационная база.
  • Облегченное управление всей сетью и ее элементами.

Недостатки:

  • Необходимость наличия специальной кадровой единицы - администратора, который занимается мониторингом и обслуживанием сервера.
  • Большие финансовые затраты на покупку главного компьютера.

Наиболее часто используемая конфигурация (топология) локальной компьютерной сети в иерархической модели - это «звезда».

Выбор топологии (компоновка сетевого оборудования и рабочих станций) является исключительно важным моментом при организации локальной сети. Выбранный вид связи должен обеспечивать максимально эффективную и безопасную работу ЛВС. Немаловажно также уделить внимание финансовым затратам и возможности дальнейшего расширения сети. Найти рациональное решение - непростая задача, которая выполняется благодаря тщательному анализу и ответственному подходу. Именно в таком случае правильно подобранные топологии локальных сетей обеспечат максимальную работоспособность всей ЛВС в целом.

Похожие статьи