Достоинства и недостатки технологии Intel Smart Response. Гибридные жёсткие диски SSHD

02.08.2019

Здравствуйте админ! Хочу купить жёсткий диск объёмом 1-2 Тб, один знакомый компьютерщик посоветовал купить диск SSHD (гибрид жёсткого диска и твердотельного накопителя SSD), так как он работает заметно быстрее обычного HDD, но не такой дорогой, как твердотельный накопитель SSD. Что вы можете сказать о таких дисках?

Привет друзья! Очень хороший вопрос. Да, гибридный жёсткий диск SSHD (Solid State Hybrid Drive) работает быстрее обычного жёсткого диска на 30 %, и дороже примерно на столько же. Если обычный жёсткий диск на 1 Тб стоит 4 000 рублей, то SSHD можно купить за 5 400 рублей. Выпускаются такие диски, как для обычных компьютеров, так и для ноутбуков.

Во-первых, ч то из себя представляет гибридный жёсткий диск

Технология производства жёстких дисков (единственного комплектующего компьютера имеющего движущиеся механические части) давно зашла в тупик и увеличить быстродействие работы жёсткого диска производственным путём практически невозможно, что доказывает появление на рынке твердотельных накопителей SSD и гибридных жёстких дисков SSHD. Но если твердотельный накопитель представляет из себя полностью немеханическое запоминающее устройство на основе микросхем памяти, то гибридный жёсткий диск, это в первую очередь обычный жёсткий диск с распаянной на нём платой быстрой флеш-памяти MLC (объём 8 Гб), применяемой в производстве твердотельных накопителей, то есть получается, что SSHD, это гибрид обычного жёсткого диска и твердотельного накопителя SSD .

Во-вторых, почему гибридный жёсткий диск SSHD работает быстрее обычного жёсткого диска

В гибридных дисках SSHD от Seagate применяется технология самообучения - Seagate Adaptive Memory , исследующая с первых секунд работы установленную на диске операционную систему, в результате чаще всего используемые программы и файлы копируются на флеш-память диска SSHD, к таким файлам относятся прежде всего элементы участвующие в загрузке операционной системы, а значит Windows со второго, третьего раза будет загружаться быстрее, ведь загрузка винды будет происходить уже из флеш-памяти. Например, на моём компьютере загрузка Windows 8.1, установленной на обычный HDD, происходит в течении 35-40 секунд, а на SSHD - 20 секунд, на обычном твердотельном накопителе SSD - 15 секунд. Тоже самое относится к постоянно используемым вами приложениям, запускаться они будут несколько быстрее. Возьмём например, требовательную к ресурсам компьютера современную игру, в которую вы постоянно играете, по моим наблюдениям, загружаться такая игра будет в три раза быстрее, чем на обычном HDD.

Гибридные жёсткий диск SSHD, это золотая середина

Вообще, идеальный вариант конфигурации накопителей в системном блоке обычного домашнего пользователя выглядит так: покупается два накопителя, первый - твердотельник SSD (объём 120-240 Гб) под установку операционной системы, а второй - обычный HDD для хранения файлов (объём) 2-3 ТБ, нужно на всё это примерно 10 000 рублей. А если вы приобретёте один гибридный диск SSHD на 1 ТБ, то он обойдётся вам в 5 400 рублей, а SSHD на 2 ТБ - 7 000 рублей. Конечно летать всё (как в случае с SSD) не будет, но может вам такие скорости и не нужны. Выходит гибридный диск SSHD, это золотая середина - за небольшие деньги вы приобретаете хорошее быстродействие и большой объём дискового пространства.

Какой SSHD купить

До недавнего времени гибридные диски SSHD производила компания, которая их и разработала - Seagate. Всего сейчас на рынке присутствуют три модели Seagate Desktop SSHD объемом 1, 2, 4 Тбайт.

Seagate Desktop SSHD ST1000DX001 1 Тб

Seagate Desktop SSHD ST2000DX001 2 Тб

Seagate Desktop SSHD ST4000DX001 4 Тб

Также с недавнего времени SSHD стала выпускать Western Digital, но на рынке они представлены мало, а та модель, которая попалась мне - WD Blue SSHD, WD40E31X объёмом 4 Тб ничем не отличалась по скоростным характеристикам от аналогичной модели Seagate ST4000DX001 4 Тб.

Предлагаю вам в сегодняшней статье рассмотреть модель Seagate Desktop SSHD ST2000DX001 объём 2 Тб и вот почему. Если взять модель Seagate Desktop SSHD 1 Тб, то размера дискового пространства 1 Тб уже мало для современного пользователя компьютера. Если взять модель Seagate Desktop SSHD 4 Тб, то наоборот, большой объём 4 Тб дискового пространства не всем нужен, да и цена его достаточно высокая (11 500 рублей), и что ещё немаловажно - скорость вращения шпинделя этого накопителя: 5900 об/мин, то есть он чуть медленнее, чем другие SSHD объемом 1 и 2 Тбайт (скорость вращения шпинделя 7200 об/мин) и на быстродействии операционной системы это обязательно скажется.

Итак, я вас уговорил и перед нами модель Seagate Desktop SSHD ST2000DX001 2 Тб

При ближайшем рассмотрении гибридный диск Seagate Desktop SSHD ST2000DX001 2 Тб оказался обычным жёстким диском, только вот написано на нём SSHD.

Объем дискового пространства - 2 Тб

Объем SSD буфера - 8 Гб

Объем кэш-памяти - 64 Мб

Скорость вращения шпинделя - 7200 rpm

На обратной стороне накопителя видим специальную печатную плату Adaptive Memory, с распаянными 8 Гбайт быстрой MLC-памяти и контроллером «гибрида».

Очень просто устанавливаем накопитель в системный блок.

SMART винчестера в программе CrystalDiskInfo и Виктории.

Гибридный диск новый и отработал 0 часов.

Тесты на чтение и запись

Чтобы убедиться в том, что наш диск на самом деле хорош, произведём несколько тестов на чтение и запись с помощью специальных программ: CrystalDiskMark 2.0, ATTO Disk Benchmark и SiSoftware Sandra. Данные утилиты произведут последовательные чтение и запись информации на наш гибридный диск небольшими блоками, затем покажут нам результат.

CrystalDiskMark 2.0

Самая простая и часто используемая в этом отношении программа, скачать можно на моём Яндекс.Диске

Утилита очень простая, выберите только нужную букву диска (в нашем случае E:)

И нажмите AII , начнётся тест SSHD диска на производительность.

1. Тест последовательного чтения и записи большими блоками данных;

2. Тест случайного чтения и записи блоками 512 Кб;

3. Тест случайного чтения и записи блоками 4 Кб;

Могу сказать, что результат очень достойный, особенно можно отметить запись блоками 512 Кб и 4 Кб.

ATTO Disk Benchmark

Протестируем гибридный диск ещё одной программой - ATTO Disk Benchmark .

Выбираем букву диска гибридного накопителя SSHD и жмём Start.

Результат.

SiSoftware Sandra

Глобальная программа способная произвести диагностику всех комплектующих компьютера и имеющая свой официальный рейтинг.

В итоге, наш диск опережает 94% результатов. Отличная производительность.

Недостатки SSHD

По моему мнению, единственный минус SSHD, это небольшой объём встроенной флеш -памяти 8 Гб, было бы здорово, если бы её размер вырос до 32 Гб, тогда в кэш твердотельника помещалось больше работающих программ и быстродействие Windows было бы точно таким, как если бы она была установлена на SSD.

«Лучшей практикой» для многих корпоративных заказчиков является применение гибридных систем хранения SSD/HDD. Такое решение позволяет воспользоваться преимуществами обоих типов носителей - большой емкостью HDD и высоким быстродействием SSD в IOPS (количество операций ввода-вывода в секунду), - но при этом остается экономически привлекательным.

В гибридной системе хранения SSD/HDD основная емкость представлена недорогими жесткими дисками, а небольшой пул для «горячих», часто используемых данных - флеш-памятью. В рационально спроектированной гибридной СХД при небольшом количестве накопителей SSD достигается значительное ускорение операций с основным пулом хранения данных.

РЕАЛИЗАЦИЯ ГИБРИДНЫХ СХД

На практике применяются два основных метода ускорения - кэширование данных и их многоуровневое хранение (tiering). В обоих случаях для увеличения производительности ввода-вывода используется концепция «горячих» данных, но в действительности это совершенно разные подходы.

При кэшировании один или несколько накопителей SSD служат в качестве кэша для виртуального пула хранения, где основное хранилище реализовано на жестких дисках. SSD в этом случае не предоставляют дополнительной емкости - это невидимая для приложений «прослойка», увеличивающая производительность ввода-вывода. Информация всегда передается в основной пул хранения, однако «горячие» данные копируются и в кэш-память (на SSD). При последующих обращениях к этим или рядом размещенным данным вместо основного пула хранения используется кэш-память, за счет чего и достигается существенный выигрыш в производительности.

При многоуровневом хранении данные соответствующим образом сортируются и помещаются на уровень SSD или HDD (уровней может быть больше двух): «горячие» отправляются на флеш-память, а реже используемые - на жесткие диски.

ЧТО ЛУЧШЕ?

Многоуровневое хранение не предполагает избыточности данных, поэтому реализация RAID в этом случае становится более сложной - требуется покупка дополнительных SSD. Сама сортировка данных и распределение их по уровням негативно сказываются на производительности. Такие системы должны управлять данными, которые из «горячих» со временем превращаются в «холодные». Ввиду отсутствия избыточности, часто используемые данные нужно перемещать в основной пул, как только они становятся менее полезными. Эти фоновые процессы потребляют IOPS и сказываются на скорости операций ввода-вывода во время таких перемещений. С наибольшей эффективностью многоуровневое хранение функционирует в тех случаях, когда соответствующие алгоритмы адаптированы к требованиям и задачам заказчика. Для достижения идеальной производительности нужны постоянный мониторинг и подстройка алгоритмов.

В отличие от сложного многоуровневого хранения, кэширование на SSD в существующих СХД реализовать проще. Гибридные системы хранения с кэшированием на SSD не требуют дополнительного администрирования, а приложение воспринимает такую систему точно так же, как и любую другую сетевую СХД, только работает она намного быстрее. Реализация RAID и защита данных у нее аналогичные, и покупать для этого дополнительные SSD не потребуется.

На SSD помещаются копии данных, поэтому осуществлять их фоновое перемещение в основной пул хранения не придется. Не будет и связанных с этим издержек, влияющих на производительность. Кэширование на SSD необходимо, впрочем, подстраивать под конкретные корпоративные приложения, но простота системы кэширования означает, что администрирование системы будет значительно менее сложным, чем у сопоставимой СХД с многоуровневым хранением.

Издержки, связанные с инсталляцией СХД с многоуровневым хранением и ее сопровождением, будут оправданными только в очень крупных организациях, которые могут позволить себе как установку стоечных модулей SSD для организации выделенного пула флеш-памяти, так и увеличение штата системных администраторов для управления СХД. Для большинства компаний, не имеющих экстремально крупных пулов хранения, предпочтительным вариантом ускорения систем хранения будет кэширование на SSD.

ПРОБЛЕМА ЗАПИСИ

Будучи более производительными, накопители SSD имеют определенные ограничения на запись данных, и это нужно иметь в виду при выборе метода ускорения СХД. Хотя хранящиеся на флеш-накопителях данные можно считывать бесконечное число раз, их ячейки допускают ограниченное число циклов записи. Эта проблема осложняется необходимостью удалять весь блок даже при записи данных меньшего объема. Для ее решения в современных контроллерах флеш-памяти применяются методы распределенной записи, кэширования операций записи и фоновая «сборка мусора». Однако запись на SSD остается более сложной операцией, чем чтение. Слишком частое выполнение записи в одни и те же ячейки может привести к быстрой деградации флеш-памяти.

Если в клиентской системе операции записи на SSD можно распределить таким образом, что каждый отдельный блок носителя будет перезаписываться достаточно редко, то в гибридной СХД уровень SSD активно задействуется для хранения «горячих» данных всего дискового пула. При кэшировании и многоуровневом хранении операции с SSD станут очень интенсивными, и преимущества алгоритмов предотвращения износа носителя будут сведены на нет. Это означает, что в обоих случаях (кэширование и многоуровневое хранение) уровень SSD лучше всего задействовать для ускорения операций чтения, а не чтения и записи.

РЕАЛИЗАЦИЯ КЭШИРОВАНИЯ НА SSD

В системе с кэшированием на SSD операция ввода-вывода производится обычным образом: вначале выполняются чтение-запись на HDD. Если эта операция инициирует кэширование, данные также копируются с HDD на SSD. Тогда при любой последующей операции чтения того же логического блока он считывается непосредственно с SSD, что увеличивает общую производительность и уменьшает время отклика. Уровень SSD играет роль невидимого ускорителя ввода-вывода, и при любом отказе SSD данные все равно будут доступны в основном пуле хранения, защищаемом с помощью RAID.

НАПОЛНЕНИЕ КЭШ-ПАМЯТИ

Кэш, как и основная емкость хранения, разбивается на группы секторов равного размера. Каждая группа называется кэш-блоком, а каждый блок состоит из подблоков. Размер кэш-блока можно настраивать под конкретное приложение, например СУБД или Web-сервер.

Считывание данных с HDD и их запись в SSD называют наполнением кэш-памяти. Эта фоновая операция обычно выполняется вслед за основной операцией чтения или записи. Поскольку назначение кэша - хранение часто используемых данных, к его наполнению должна приводить не каждая операция ввода-вывода, а только та, для которой пороговое значение счетчика оказывается превышенным. Обычно счетчики наполнения применяются при чтении и при записи.

Таким образом, с каждым блоком основной емкости хранения ассоциируются счетчики чтения и записи. Когда приложение считывает данные из кэш-блока, значение его счетчика чтения увеличивается. Если данные в кэш-памяти отсутствуют, а значение счетчика чтения больше или равно значению наполнения при чтении, то параллельно с основной операцией чтения выполняется операция наполнения кэш-памяти (данные кэшируются). Если же данные уже есть в кэш-памяти, они считываются с SSD, а операция наполнения не осуществляется. Если значение счетчика чтения меньше порогового значения, оно увеличивается, а операция наполнения не выполняется. Для операции записи сценарий тот же. Подробнее он поясняется на иллюстрациях на предыдущем развороте.

Что происходит с содержимым кэша после его «разогрева»? Если на SSD есть свободное место, кэш продолжает заполняться «горячими» данными. Когда емкость SSD исчерпывается, применяется алгоритм перезаписи наименее используемых данных (Least Recently Used, LRU), то есть на место последних в кэш-памяти записываются новые «горячие» данные.

Если объем «горячих» данных превышает емкость SSD, процент считываемых из кэш-памяти данных уменьшается, соответственно, снижается и производительность. Кроме того, чем меньше емкость SSD (и чем больше объем горячих данных), тем интенсивнее обмен «горячих» данных. В результате SSD будет изнашиваться быстрее.

Специалисты Qsan рекомендуют использовать накопители Intel SSD DC S3500. Так, у SSD емкостью 480 Гбайт наработка на отказ (MTBF) составляет 2 млн ч. Что касается производительности, то типичная задержка у этих накопителей равна 50 мс, максимальная задержка при чтении - 500 мс (99,9% времени), а производительность при произвольном чтении блоками по 4 Кбайт достигает 75 тыс. IOPS, при записи - 11 тыс. IOPS. Это хороший вариант для SSD-кэширования.

КЭШИРОВАНИЕ ПРИ ЧТЕНИИ-ЗАПИСИ

Операция чтения при отсутствии данных в кэш-памяти происходит следующим образом:

  1. Данные считываются с HDD.
  2. Выполняется операция наполнения SSD.

Операция чтения при наличии данных в кэш-памяти:

  1. Приложение подает запрос на чтение данных.
  2. Данные считываются с SSD.
  3. Запрошенные данные возвращаются приложению.
  4. При сбое SSD данные считываются с HDD.

Действия приложения при записи данных:

  1. Приложение подает запрос на запись данных.
  2. Данные записываются на HDD.
  3. Приложению возвращается статус операции.
  4. Выполняется операция наполнения кэш-памяти на SSD.

НАСТРОЙКА КЭШ-ПАМЯТИ SSD

Чтобы приложение использовало кэш-память на SSD максимально эффективно, ее можно настроить. Основные параметры - размер блока кэш-памяти, пороговые значения наполнения при чтении и при записи.

Размер блока. Большой размер блока кэш-памяти подходит для приложений, часто обращающихся к соседним (по физическому расположению) данным. Это называется высокой локальностью обращений. Увеличение размера блока также ускоряет наполнение кэш-памяти на SSD - ускоряется «разогрев» кэша, после которого приложения с высокой локальностью обращений будут демонстрировать весьма высокую производительность. Однако увеличение размера блока влечет за собой генерирование избыточного трафика ввода-вывода и увеличение времени отклика, особенно для отсутствующих в кэше данных.

Меньший размер блока хорош для приложений с менее локализованными данными, то есть когда доступ к данным осуществляется в основном случайным образом. Кэш-память на SSD будет «разогреваться» медленнее, но чем больше блоков, тем больше вероятность попадания в кэш нужных данных, особенно данных с низкой локальностью обращений. При небольших блоках коэффициент использования кэш-памяти ниже, но меньше будут и сопутствующие потери, так что при «промахе», когда нужных данных нет в кэш-памяти, производительность страдает меньше.

Пороговое значение наполнения. Порог наполнения кэша - это число обращений к данным, после которого соответствующий блок копируется в SSD-кэш. При большом значении кэшируются только часто используемые данные и уменьшается обмен данных в кэше, но увеличивается время «разогрева» кэш-памяти и растет эффективность ее использования. При меньшем значении кэш-память разогревается быстрее, но возможно ее избыточное наполнение. Для большинства приложений вполне достаточно порогового значения, равного 2. Наполнение при записи полезно в том случае, когда записываемые данные вскоре снова считываются. Подобное нередко случается в файловых системах. Другие приложения, например базы данных, не имеют такой особенности, поэтому наполнение при записи для них иногда лучше вовсе отключить.

Как можно видеть, увеличение или уменьшение каждого параметра имеет свои положительные и отрицательные последствия. Очень важно понимать «локальность» приложения. Кроме того, полезно протестировать систему на реальных нагрузках и посмотреть, при каких параметрах она показывает лучшие результаты.

ПРИМЕР КОНФИГУРАЦИИ КЭША НА БАЗЕ SSD

В тесте моделировалась типовая ситуация ввода-вывода (произвольное чтение 90% + запись 10%) для определения выигрыша, который дает использование SSD-кэша. При тестировании применялась система AegisSAN Q500 в следующей конфигурации:

  • HDD: Seagate Constellation ES, ST1000NM0011, 1 Тбайт, SATA 6 Гбит/с (x8);
  • SSD: Intel SSD DC 3500, SSDSC2BB480G4, 480 Гбайт, SATA 6 Гбит/с (x5);
  • RAID-группа: RAID 5;
  • тип ввода-вывода: Database Service (8 Кбайт);
  • режим ввода-вывода: блоки по 8 Кбайт.

Время «разогрева» вычисляется по следующей формуле:

T = (C × P) / (I × S × D),

где T - время «разогрева», I - средняя производительность в IOPS одного HDD при произвольном чтении, S - размер блока ввода-вывода, D - число HDD, C - совокупная емкость всех SSD, P - пороговое значение наполнения кэш-памяти при чтении или записи. На практике «разогрев» кэша может занять больше времени.

Для данной конфигурации оно составит:

Т = (2 Тбайт × 2) / (244 × 8 Кбайт × 8) = 275 036,33 сек = 76,40 ч.

Без кэширования на SSD средняя производительность составила 962 IOPS. При включении кэширования она выросла до 1942 IOPS, то есть улучшение после «разогрева» кэша оказалось двукратным - 102%. Согласно расчетной формуле время разогрева равно 76,4 ч, в тесте после 75 ч производительность в IOPS достигла максимальной величины и оставалась после этого стабильной.

ЗАКЛЮЧЕНИЕ

В концепции ускорения гибридных СХД реализуется идея увеличения производительности всей системы за счет быстрого доступа к «горячим» данным. Принимая во внимание затраты на оборудование и администрирование, можно утверждать, что в общем случае кэширование данных на SSD представляет собой наилучший способ получения преимуществ высокой производительности при использовании систем хранения с флеш-накопителями без потери надежности хранения данных.

Бартек Митник - директор по продажам компании Qsan Technology в регионе EMEA.

Традиционными способами ускорения ПК считаются апгрейд или разгон процессора и видеокарты, а также расширение объема оперативной памяти. При этом зачастую без внимания остается не менее важная часть компьютера — дисковая подсистема. Ее скорость влияет на быстродействие ПК не менее чем мощный CPU или пара лишних гигабайт ОЗУ — как-никак, если жесткий диск «тормозит», все сверхскоростные компоненты будут вынуждены терпеливо ждать его, а вместе с ними — и пользователь.

Способов ускорения дисковой подсистемы до недавнего времени было фактически три: замена HDD более быстрой моделью, сборка RAID-массива или переход на SSD, и у каждого из этих подходов есть свои недостатки. С выходом чипсета Intel Z68 процессорный гигант предложил пользователям ПК еще один путь — промежуточное кэширование данных, с которыми активно работает система, на небольшом SSD. Технология получила название Smart Response. К слову, мы не зря уточнили, что Intel предложила эту технологию именно для ПК: на самом деле SSD-кэширование было предложено еще в 2009 году компанией Adaptec для высокоуровневых серверных тяжелонагруженных RAID-массивов (Adaptec MaxIQ), а затем подобные решения представили и другие игроки рынка enterprise-СХД. Что характерно, как в корпоративном сегменте за первопроходцем последовали конкуренты, так и в пользовательском произошло то же самое, и сегодня мы рассмотрим один из аналогов Intel Smart Response на примере твердотельного накопителя OCZ Synapse Cache. Преимущество подобных гибридных систем над жесткими дисками очевидно: часто используемые данные переносятся на радикально более быстрый SSD. А относительно самостоятельных твердотельных накопителей эта модель использования более выгодна за счет того, что не приходится жертвовать емкостью — как-никак, стоимость гигабайта у SSD и HDD пока различается на порядок.

Участники тестирования

В качестве «точки отсчета» для оценки производительности традиционного жесткого диска будет выступать Western Digital VelociRaptor WD1500HLHX.

WD VelociRaptor


Это младшая 150-гигабайтная модель из последнего поколения «рапторов», отличающаяся поддержкой SATA 6 Гбит/с и буфером емкостью 32 МБ. Как и у всего семейства «хищников» WD, ключевая особенность данного диска — скорость вращения шпинделя 10000 об/мин и форм-фактор 2,5" (хотя физически HDD установлен на крупный 3,5-дюймовый радиатор). За счет большей частоты вращения и меньшего размера пластин достигается рост линейной скорости и, в особенности, снижение времени доступа по сравнению с традиционными моделями на 7200 об/мин, не говоря уже о более медленных «зеленых» сериях. В итоге мы получаем самый быстрый из доступных на рынке SATA-накопителей для ПК и рабочих станций.

Вторым участником тестирования станет массив RAID-0 из двух VelociRaptor — посмотрим, какие дивиденды приносит простое приобретение второго диска к уже имеющемуся и сборка массива на чипсетном контроллере.

Третье устройство в тесте — SSD-накопитель OCZ Vertex 3 Max IOPS емкостью 120 ГБ.


На сегодняшний день это, фактически, самый быстрый твердотельный накопитель среди устройств в форм-факторе 2,5" (маргинальные устройства с интерфейсами PCI Express x4 и HSDL в расчет брать не будем). SSD основан на топовой модификации контроллера SandForce второго поколения — SF-2281, использует 25-нанометровую память NAND производства Micron. Заявленная производительность составляет 550 МБ/с при линейном чтении, 500 МБ/с — при записи, время доступа — 0,1 мс. Максимальная производительность при обращении на запись 4-килобайтными блоками со случайной адресацией — до 85000 IOPS.

Четвертым и пятым участниками тестирования станут гибридные конфигурации Intel Smart Response из одиночного WD VelociRaptor в тандеме с OCZ Vertex 3 Max IOPS. Отличаться они будут лишь режимами работы кэширования. Что такое Intel Smart Response? Как мы уже упоминали выше, ее суть сводится к кэшированию на SSD активно используемых данных с жестких дисков (которые, как бы они ни были быстры и совершенны, в разы уступают твердотельным по ряду параметров). Система в фоновом режиме анализирует, к каким файлам ОС и ПО пользователя обращаются наиболее часто, и перемещает их на SSD-накопитель. К сожалению, маркетологи Intel не дают возможности воспользоваться этой опцией всем пользователям платформы компании — Smart Response доступна только на чипсете Z68. Для работы в составе подобных гибридных массивов компания предлагает собственный SSD Intel 311 (Larson Creek), оптимизированный специально для этих целей (он основан на SLC-чипах, которые стоят на порядок больше MLC, но и «живут» значительно дольше). К счастью, хотя бы тут ограничений нет, потому мы используем обычный OCZ Vertex 3.

Настройка Intel Smart Response

Процедура настройки Intel Smart Response довольно проста, хотя и не лишена «подводных камней». Первая сложность, с которой может столкнуться пользователь уже собранной и работающей системы, пожелавший ускорить свой HDD, — необходимость перевести контроллер в режим RAID. Естественно, без некоторых ухищрений безболезненно это проделать не удастся — ОС перестанет загружаться. Решается проблема либо заменой драйверов стандартными от Microsoft и правкой реестра, либо «инъекцией» драйверов RAID через установщик Windows 7 или Acronis True Image Plus Pack.

Вторая сложность — после вышеописанных процедур управляющая утилита Intel Rapid Storage все равно не отображает возможность организации Smart Response. Проблема решается переустановкой драйверов (и, вероятно, в будущем будет исправлена в новой версии пакета).

Создаем гибридный массив Intel Smart Response


Статус созданного массива


Итак, после установки в систему SSD в центре управления Intel Rapid Storage появляется вкладка Accelerate (ускорить), в которой можно выбрать, какой объем SSD мы хотим отдать под кэширование (13,6 ГБ или максимально возможные 64 ГБ), и в каком режиме будет работать Smart Response — улучшенном (Enhanced) или максимальном (Maximum). Отличаются они характером кэширования: улучшенный подразумевает буферизацию только тех данных, к которым производятся активные запросы на чтение (исполняемые файлы, библиотеки и т.п.), а максимальный кэширует еще и операции записи. Соответственно, значительно ускорится и работа со всевозможными временными файлами, контейнерами (например, scratch-файлом Adobe Photoshop или каталогом Lightroom), но в случае отключения питания или выхода SSD из строя данные неизбежно будут потеряны, т.к. физически, пока к ним не прекратится активный доступ, они не будут перенесены на HDD.

Если же настройку Smart Response предполагается осуществить с нуля, и потом ставить на гибридный массив ОС, то процедуру можно произвести и в конфигурационном меню дискового контроллера, которое выводится сразу после POST.

Оставшаяся часть SSD доступна пользователю


Отметим, что неиспользуемая технологией Smart Response часть SSD остается доступной пользователю — на нее можно установить, например, программное обеспечение.

Наконец, шестой участник — OCZ Synapse Cache емкостью 120 ГБ.


От собрата под маркой Vertex (как и от серии Agility) он, фактически, отличается лишь прошивкой.

OCZ Synapse Cache


Основой данного накопителя все так же является SandForce SF-2281, однако firmware этой модели, в первую очередь, ориентирована на долговечную работу. Для этого степень over-provisioning (резервирования ячеек для подменного фонда на случай их постепенного выхода из строя) составляет целых 50%.

Плата накопителя


Фактически, у 120-гигабайтной модели доступны для работы только 60 ГБ, а у младшей модификации емкостью 60 ГБ — всего 30. Очевидно, что использовать Synapse Cache в качестве обычного SSD нет никакого смысла.

Задняя крышка


Изменения в прошивку внесены неспроста. Synapse Cache предназначен для работы с лицензированной OCZ утилитой Dataplex от американской компании NVELO. Как и драйвер Intel Rapid Storage, эта утилита «на лету» анализирует все дисковые операции, происходящие на компьютере, и в фоновом режиме переносит «горячие» данные на SSD. Однако, есть и отличия: во-первых, после ее установки SSD полностью пропадает из системы и становится недоступен пользователю. Во-вторых, Dataplex не требует работы в режиме RAID и, следовательно, совместима и с материнскими платами, контроллеры HDD которых не поддерживают эту технологию. Основной же «плюс» этого решения — полная совместимость со всеми чипсетами, а не только с Intel Z68.

К сожалению, без ограничений не обошлось: Dataplex работает только в Windows 7 и на данный момент не поддерживает жесткие диски емкостью свыше 2 ТБ (что планируется исправить до конца года). Кроме того, кэширует он только обращения к системному HDD, таким образом, если вы хотите установить ПО или игры на другой жесткий диск, они «ускоряться» не будут.

Особенность технологии в том, что она всегда кэширует и чтение, и запись данных. Безопасного промежуточного режима вроде Enhanced в Smart Response у нее нет. Естественно, это заставляет опасаться за сохранность пользовательских данных, однако поэтому-то у OCZ Synapse Cache и 50% резервной области, а не 6,25%, как у Vertex 3.

Прелесть Dataplex в невероятной простоте ее настройки: нужно лишь подключить SSD, загрузить с сайта OCZ утилиту (предварительно зарегистрировавшись), установить ее, введя код, расположенный на инструкции к накопителю и его корпусе, и перезагрузить ПК. Всё.

Вот и вся конфигурационная утилита


Поразительно, но больше никаких манипуляций производить не надо, никаких настроек у системы нет, и они не нужны. В меню «Пуск» есть только утилита проверки состояния Dataplex, которая бодро рапортует о том, что кэширование активно.

Что же, посмотрим, что окажется лучше.
Методика тестирования

Тестирование проводилось на тестовом стенде следующей конфигурации:

  • материнская плата: Sapphire Pure Platinum Z68 (Intel Z68 Express);
  • процессор: Intel Core i3-2100;
  • оперативная память: Kingston KVR1333D3N9 (2x2 ГБ, DDR3-1333);
  • видеокарта: Palit GeForce GTX 480;
  • накопители: WD VelociRaptor WD1500HLHX x2, OCZ Vertex 3 Max IOPS 120 GB, OCZ Synapse Cache 120 GB;
  • монитор: LG W3000H;
  • блок питания: Huntkey X7-900 (900 Вт);
  • операционная система: Microsoft Windows 7 Ultimate x64, Intel RST Driver 10.8.0.1003.
Использовался следующий набор тестовых приложений:
  • CrystalDiskMark 3.0.1 x64 — синтетическая оценка линейной скорости накопителя, скоростей в многопоточном режиме с глубиной очереди 64 запроса, при случайном доступе блоками по 4 КБ, а также времени доступа;
  • AS SSD Benchmark 1.6.4237.30508 — синтетическая оценка линейной скорости накопителя, скоростей в многопоточном режиме с глубиной очереди 64 запроса, при случайном доступе блоками по 4 КБ, а также времени доступа;
  • HD Tune 5.0 — снятие диаграммы линейного чтения с накопителей;
  • Futuremark PCMark Vantage HDD Suite — набор тестовых трасс, эмулирующих работу пользователя в наиболее популярных типах приложений;
  • Futuremark PCMark 7 System Storage — аналогично PCMark Vantage, представляет собой набор тестовых трасс, ориентированный на оценку системного накопителя ПК;
  • Retouch Artists Photoshop Benchmark — автоматизированный набор фильтров для Adobe Photoshop, предназначенный для оценки быстродействия ПК;
  • DriverHeaven Photoshop Benchmark — аналогичный предыдущему набор фильтров для Adobe Photoshop;
  • PPBM5 — бенчмарк для Adobe Premiere CS5, представляющий собой проект из трех различных видеорендеров, один из которых критичен к производительности жесткого диска.
Также оценивались:
  • время запуска ОС с помощью утилиты BootRacer (фиксирует время между стартом ядра ОС и полной загрузкой всех служб и программ в автозагрузке);
  • время запуска ОС с помещенными в автозагрузку Microsoft Word, Excel и PowerPoint 2010, открывающими текстовый документ размером 4,2 МБ (4208 страниц), таблицу размером 50,6 МБ (65187 строк) и презентацию размером 72 МБ (69 слайдов), соответственно;
  • время запуска тестовой сцены Crysis 2 в режиме DirectX 11 с High Resolution Texture Pack (от нажатия Start в Adrenaline Crysis 2 Benchmark Tool до старта сцены);
  • время запуска тестовых сцен S.T.A.L.K.E.R. Call of Pripyat Benchmark (сумма времен от появления заставки игры до начала тестовой сцены).
Все тесты проводились 5 раз для того, чтобы дать возможность всем кэширующим алгоритмом добиться максимальной производительности.

CrystalDiskMark

WD VelociRaptor WD1500HLHX


2x WD VelociRaptor RAID-0









Первый синтетический тест сразу, ожидаемо, отдает предпочтение SSD-накопителям, и это неудивительно: устройства на базе мощнейших контроллеров SandForce второго поколения могут похвастать не только минимальным временем доступа (что и является основным козырем твердотельных накопителей), но и огромными показателями линейных скоростей. В результате OCZ Vertex 3 с огромным отрывом опережает WD VelociRaptor и RAID-0 на его базе. Однако есть и интересные результаты: во-первых, заметно, что Intel Smart Response имеет довольно значительные накладные расходы. В частности, в режиме Enhanced мы наблюдаем великолепный прирост производительности в режиме чтения, однако показатели при записи оказываются даже ниже относительно одиночного жесткого диска при линейном доступе. Еще больше сказывается переход в режим Maximized: система теряет еще 40 МБ/с при чтении, однако скорость записи, естественно, несравнимо вырастает, особенно на мелких блоках. Правда, в линейном доступе Smart Response не может сравниться даже с RAID-0 из «рапторов», не то что с одиночным OCZ Vertex 3. Однако тут нужно понимать, что в данном случае запись происходит не на сам SSD, а «сквозь» него на жесткий диск, и наблюдаемый прирост — это усредненное значение, полученное за счет резких всплесков скорости при записи на твердотельный накопитель.

Второе интересное наблюдение: система с OCZ Synapse Cache в синтетическом тесте значительно уступает обоим режимам Intel SRT. По линейным скоростям она сравнима с RAID-0, а при работе с мелкими блоками уступает Intel SRT вплоть до 50%. Сложно сказать, чем объясняются такие результаты: с одной стороны, в синтетических тестах подобные алгоритмы кэширования и должны вмешиваться как можно меньше, чтобы не изнашивать ячейки NAND, с другой, вряд ли NVELO удалось разработать более «умный» алгоритм, чем Intel. Вполне вероятно, просто сказываются накладные расходы на обработку шквала запросов, которые генерируют CrystalDiskMark и аналогичные утилиты, и у Dataplex они оказываются выше, чем у Intel Smart Response.

AS SSD Benchmark


WD VelociRaptor WD1500HLHX



2x WD VelociRaptor RAID-0






WD VelociRaptor + OCZ Vertex 3 Max IOPS (Intel SRT Enhanced)



WD VelociRaptor + OCZ Vertex 3 Max IOPS (Intel SRT Maximized)



WD VelociRaptor + OCZ Synapse Cache


Несмотря на однотипность утилит CrystalDiskMark и AS SSD Benchmark, они основаны на разных алгоритмах тестирования, в частности, последняя оценивает быстродействие SSD намного более скрупулёзно, и суммарный объем записываемых на них данных доходит до 3 ГБ за один проход. В результате мы получаем довольно интересную картину.

Обратите внимание на занимательные показатели прироста производительности при переходе от одного HDD к RAID-0. В режиме линейного чтения и записи он, как и ожидается, составляет около 80—90%. Однако при нагрузке массива мелкими запросами в многопоточном режиме он начинает работать более чем вдвое быстрее одиночного диска! Объяснение этому простое: логика драйвера Intel Rapid Storage отлично справляется с кэшированием, а отлаженные прошивки VelociRaptor успешно переупорядочивают очередь запросов. Эти HDD разрабатываются именно для работы в таких условиях, и неудивительно, что их потенциал лучше раскрывается именно в RAID, а не в одиночном режиме.

Отметим, что AS SSD, в отличие от CrystalDiskMark, не обнаруживает значительного падения скорости чтения в режиме Intel SRT Maximized относительно режима Enhanced, хотя оба они работают примерно на 20% медленнее самостоятельного SSD. Также интересно, что в режиме Enhanced поток запросов AS SSD на чтение не полностью переносится на кэширующий твердотельный диск: в паттерне 4K 64Thrd (доступ блоками по 4 КБ со случайной адресацией в 64 одновременных потока) в этом режиме массив демонстрирует 18200 IOPS против 45500 IOPS в режиме Maximized.

Что касается OCZ Synapse Cache, то с ним показатели сохраняются — он почти вдвое медленнее при чтении, чем Intel SRT, однако с записью (в особенности многопоточной) справляется намного лучше. Вероятнее всего, тут снова сказываются особенности работы Dataplex: с одной стороны, этот алгоритм менее активно кэширует запросы на чтение, с другой — лучше справляется с записью.

HD Tune

WD VelociRaptor WD1500HLHX


2x WD VelociRaptor RAID-0



WD VelociRaptor + OCZ Vertex 3 Max IOPS (Intel SRT Enhanced)


WD VelociRaptor + OCZ Vertex 3 Max IOPS (Intel SRT Maximized)


WD VelociRaptor + OCZ Synapse Cache


Наконец, изучение графиков чтения всех шести вариантов подсистем хранения данных, рассматриваемых нами, дает примерное представление, почему предыдущие два теста вели себя так необычно. Как видно на графиках обоих режимов Intel SRT, при обращении к HDD на чтение в линейном режиме драйвер начинает что-то делать, вероятнее всего, активно кэшировать хранимые по выбираемым тестовым приложением адресам данные. В итоге мы наблюдаем заметный «провал» в скорости. Как только занятое пространство заканчивается (а в нашем случае резкий скачок на графике до нормального уровня как раз примерно приходится на границу занятой ОС и тестовым пакетом области) — все приходит в норму. Кроме того, график чтения системы с одиночным OCZ Vertex 3 также показывает, что этот SSD в фоновом режиме очень активно проводит служебные операции над занятой зоной.

График чтения системы с OCZ Synapse Cache вообще объяснению не поддается, судя по всему, характер обращений HD Tune просто непонятен Dataplex. Фактически при используемом HD Tune формате доступа к HDD (линейно блоками по 1 МБ) Dataplex даже снижает производительность относительно чистой скорости, обеспечиваемой жестким диском.
Futuremark PCMark Vantage HDD Suite










PCMark Vantage в первую очередь критичен к времени доступа накопителя на чтение, потому OCZ Vertex 3 тут занимает доминирующую позицию. Аналогично это сказывается и на результатах RAID-массива из двух WD Velociraptor: несмотря на выросшую вдвое скорость линейного чтения и записи и более чем вдвое — скорость случайной записи, результаты у этой конфигурации лишь на 400 баллов выше, чем у одиночного «раптора». По той же причине и массив Smart Response Maximized лишь ненамного превосходит конфигурацию Enhanced — большинство операций, проводимых тестовым пакетом, направлены на чтение. Отметим, что в общем зачете OCZ Synapse Cache отстает от Intel SRT лишь на 10% — значительно меньше, чем в синтетических тестах.

Интересно, что Dataplex справляется с подтестами Windows Media Center, Windows Media Player и загрузкой приложений лучше, чем Intel SRT в режиме Enhanced — это прямое свидетельство преимущества, получаемого от кэширования операций записи. В то же время в Windows Photo Gallery и Windows Defender альтернативная технология безнадежно проигрывает, за счет чего и оказывается позади решения Intel.

Также отметим, что в PCMark Vantage мы столкнулись со странным поведением OCZ Synapse Cache, или, скорее, технологии Dataplex. После первого прохода тестов последующие неизбежно показывали очень низкие результаты, причем систему проследить оказалось невозможно: за один проход массив мог получить 15000 баллов, за второй — 7000, а за третий и вовсе 3000. Вернуть показатели до ожидаемых 30000 удавалось только повторным проходом любого из синтетических тестов (перезагрузка не помогала). Очевидно, что в данном случае мы имеем локальную недоработку ПО, которую, вполне вероятно, NVELO ее исправит в следующем релизе. Впрочем, ни в одном другом тесте такое поведение на обнаруживалось, так что можно считать это единичным случаем, не влияющим на общий результат.

Futuremark PCMark 7 System Storage Suite









Переработанный тестовый пакет PCMark Vantage 7 System Storage Suite еще больше полагается на время доступа, однако и линейной скорости уделяется несколько больше внимания при подсчете конечного результата. В итоге RAID-массив уже опережает одиночный HDD не на 5%, а на целых 20%. В то же время значительно меньшая скорость линейного чтения, показываемая OCZ Synapse Cache относительно Intel Smart Response, оказывает этой технологии медвежью услугу: она получает на 45% меньший результат, нежели SRT в режиме Maximized. Если смотреть результаты в каждом из тестов, то видно, что абсолютно везде Dataplex значительно уступает не только OCZ Vertex 3 Max IOPS, но и обоим режимам Intel Smart Response, в то время как в PCMark Vantage эта технология у них иногда выигрывала.

Время запуска ОС

Run 1 Run 2 Run 3 Run 4 Run 5
WD1500HLHX 28 25 20 20 20
2x WD1500HLHX RAID-0 31 20 17 17 17
OCZ Vertex 3 Max IOPS 120 GB 12 12 9 9 9
31 14 13 10 10
24 9 10 9 9
27 11 11 11 11

Переходим от специализированных тестов к оценке того, что же дает применение каждого из тестируемых сегодня вариантов в реальной жизни. Первым будет загрузка ОС Windows 7 SP1 64-бит. Замер производился при пяти последовательных перезагрузках.

Как видим, Microsoft постаралась минимизировать влияние медленной дисковой подсистемы в условиях, когда пользователь запускает один и тот же набор ПО: уже на второй загрузке технологии Windows Prefetcher и SuperFetch, перемещающие наиболее активно используемые исполняемые файлы и библиотеки в начало диска (наиболее быструю его часть) и автоматически загружающие их в ОЗУ при старте, обеспечивают снижение времени старта на 12% для одиночного WD VelociRaptor и 55% (!) — для RAID-0. К третьему рестарту они уже достигают своей максимальной эффективности, и время сокращается еще сильнее — на 40% и 82%, соответственно!

Переход с HDD на SSD, ожидаемо, очень сильно снижает время загрузки — с OCZ Vertex 3 Max IOPS Windows 7 стартует всего за 12 секунд, а после того как SuperFetch «выкинет» из предзагрузки все лишнее — и вовсе за 9. И вот тут приходит время удивляться быстродействию гибридных массивов: как видим, первый запуск системы оказывается примерно таким же, как и с HDD, однако уже на второй раз время старта снижается радикально. Что интересно, минимального значения системы Intel SRT Maximized и Dataplex достигают уже на втором перезапуске, а Enhanced для этого требуются три старта.

Время запуска ОС и пакета MS Office

Run 1 Run 2 Run 3 Run 4 Run 5
WD1500HLHX 60 62 29 23 26
2x WD1500HLHX RAID-0 29 26 28 28 31
OCZ Vertex 3 Max IOPS 120 GB 14 15 12 15 13
WD1500HLHX + OCZ Vertex 3 SR Enhanced 21 16 12 19 12
WD1500HLHX + OCZ Vertex 3 SR Maximized 20 21 15 15 15
WD1500HLHX + OCZ Synapse Cache 128 GB 31 14 16 17 13

Добавление в автозагрузку «тяжелых файлов» Microsoft Word, Excel и PowerPoint значительно увеличивает время загрузки ОС, и тем явнее становится эффект от кэширования. Как видим, одиночный HDD при третьем рестарте получает более чем двукратный прирост быстродействия от SuperFetch и Prefetcher, в то время как на RAID-0 эти технологии вообще не сказываются, в отличие от загрузки чистой системы. Очевидно, в случае двух VelociRaptor операционная система со всем ПО и так умещается на наиболее скоростных внешних дорожках пластин, и технологии Microsoft просто уже не могут сделать загрузку быстрее.

Аналогичная ситуация наблюдается и с OCZ Vertex 3: все пять проходов этого теста демонстрируют примерно одинаковое время загрузки, хотя и наблюдаются колебания в пределах трех секунд. В целом же Vertex 3 Max IOPS вдвое быстрее RAID-0 и вчетверо — одиночного WD VelociRaptor.

На фоне предыдущих трех участников особенно эффектно выглядят гибридные массивы. Intel SRT Enhanced уже при первом же запуске показывает меньшее время, чем одиночный HDD (очевидно, часть компонентов ОС и ПО дублируются, и перенос их на SSD уже дает прироста скорости), а при третьем — достигает максимальной производительности, идентичной OCZ Vertex 3. Впрочем, как и с одиночным SSD, у этой конфигурации наблюдаются колебания от прохода к проходу аж до 7 секунд. Аналогичная ситуация наблюдается и с Dataplex: массив с OCZ Synapse Cache загружает ОС и офисный пакет на пару секунд медленнее, нежели Intel SRT, и его показатели тоже не отличаются стабильностью. Единственной конфигурацией, порадовавшей повторяемостью результатов, стала Intel Smart Response Maximized — третий рестарт она прошла за 15 секунд и в дальнейшем не замедлялась ни разу.

PPBM5 (Adobe Premiere Pro CS5) Disk Test

Run 1 Run 2 Run 3 Run 4 Run 5
WD1500HLHX 142 142 144 143 142
2x WD1500HLHX RAID-0 135 135 134 134 134
OCZ Vertex 3 Max IOPS 120 GB 136 135 133 133 133
WD1500HLHX + OCZ Vertex 3 SR Enhanced 139 135 136 136 136
WD1500HLHX + OCZ Vertex 3 SR Maximized 138 145 141 137 136
145 135 136 137 143

Дисковый тест из бенчмарка PPBM5 представляет собой рендеринг 13-гигабайтного ролика AVI из большого числа исходных файлов, что должно обеспечивать большую нагрузку на дисковую подсистему. На практике же мы видим, что в основном он критичен к пропускной способности диска: все конфигурации, достигающие около 250 МБ/с в линейном режиме, справляются с рендерингом за примерно одинаковое время. Отстают от лидеров лишь одиночный WD VelociRaptor (что естественно) и гибридный массив с OCZ Synapse Cache, который, как мы уже видели по синтетическим тестам, оказывается значительно медленнее Intel SRT и OCZ Vertex 3 по скорости линейного чтения.

Retouch Artists Photoshop Benchmark (Adobe Photoshop CS5 Extended)

Run 1 Run 2 Run 3
WD1500HLHX 21,5 21,8 21,2
2x WD1500HLHX RAID-0 19,5 19,7 19,6
OCZ Vertex 3 Max IOPS 120 GB 22,4 20 20,8
WD1500HLHX + OCZ Vertex 3 SR Enhanced 20,7 20,8 20,8
WD1500HLHX + OCZ Vertex 3 SR Maximized 21,2 20,4 20,2
WD1500HLHX + OCZ Synapse Cache 120 GB 20,6 20,2 20,9

Этот тест представляет собой набор фильтров и операций, автоматически применяемых к тестовому изображению. Как видно из таблицы, все шесть конфигураций справляются с ним примерно одинаково быстро, с разрывом примерно в 1,5 секунды. Отметим, что в данном случае количество проходов теста на скорости никак не сказывается (для проверки он специально был проведен на Intel Smart Response Maximized 10 раз — безрезультатно).

HardwareHeaven Photoshop Benchmark (Adobe Photoshop CS5 Extended)

Run 1 Run 2 Run 3
WD1500HLHX 200,6 201,2 200,5
2x WD1500HLHX RAID-0 187,9 187,7 188,1
OCZ Vertex 3 Max IOPS 120 GB 198 197,5 198,4
WD1500HLHX + OCZ Vertex 3 SR Enhanced 198,2 197,9 198,2
WD1500HLHX + OCZ Vertex 3 SR Maximized 199,2 198,5 198,3
WD1500HLHX + OCZ Synapse Cache 128 GB 198,8 198,1 198,3

Как и предыдущий тест, этот набор фильтров и операций (хоть и значительно более сложный и ресурсоемкий) не получает прироста производительности от SSD-кэширования. Из всех участников стоит выделить только двоих: одиночный WD VelociRaptor оказывается заметно медленнее всех других конфигураций (хотя «заметно» — это всего 3 секунды), а вот RAID-0 неожиданно намного опережает и гибридные конфигурации, и даже SSD. Учитывая, что по всем скоростным параметрам он должен им уступать, единственное логичное объяснение этому факту — больший объем, используемый Photoshop для scratch-файла (во всех конфигурациях ему отводилось все свободное пространство).

Crysis 2

Run 1 Run 2 Run 3 Run 4 Run 5
WD1500HLHX 64 62 63 40 39
2x WD1500HLHX RAID-0 52 40 41 40 39
OCZ Vertex 3 Max IOPS 120 GB 45 39 39 42 38
WD1500HLHX + OCZ Vertex 3 SR Enhanced 55 49 48 41 40
WD1500HLHX + OCZ Vertex 3 SR Maximized 57 39 40 40 39
WD1500HLHX + OCZ Synapse Cache 120 GB 67 44 39 40 41

Наконец, перейдем к играм. Crysis 2 с набором текстур высокого разрешения занимает 12,5 ГБ на диске и грузится довольно долго. Судя по минимальным результатам, показываемым всеми шестью конфигурациями в тесте, наш стенд способен запускать бенчмарк примерно за 40 секунд, однако тут есть оговорки.

Во-первых, в реальных условиях скорость диска влияет на время загрузки уровней и локаций, что игрок делает не раз в минуту (если его, конечно, не убивают постоянно в одном и том же месте). Следовательно, преимущества SuperFetch, наблюдаемые нами на примере VelociRaptor и RAID-0, чаще всего будут не так заметны — за время игры от уровня к уровню с диска будет считано достаточно данных, чтобы предзагрузчик «загрязнил» этот кэш, и он не показал максимальной эффективности. С гибридными комбинациями такая ситуация произойти не должна, т.к. объем буферного SSD будет достаточен для всего, что будет происходить. Особенно значительный прирост будет наблюдаться в случае дублирования элементов между локациями: тогда первая загрузка займет, к примеру, 30 секунд, а вторая вполне может произойти и за 10.

Возвращаясь к нашим результатам, видим, что ко второй загрузке максимальной эффективности достигают RAID-0, Intel SRT в режиме Maximized и, естественно, OCZ Vertex 3. OCZ Synapse Cache показывает заветные 40 секунд при третьем перезапуске, а Intel SRT Enhanced и одиночный WD VelociRaptor — при четвертом.

S.T.A.L.K.E.R. Call of Pripyat

Run 1 Run 2 Run 3 Run 4 Run 5
WD1500HLHX 123 126 121 121 124
2x WD1500HLHX RAID-0 113 97 97 98 97
OCZ Vertex 3 Max IOPS 120 GB 104 98 99 98 99
WD1500HLHX + OCZ Vertex 3 SR Enhanced 118 99 102 101 100
WD1500HLHX + OCZ Vertex 3 SR Maximized 117 99 100 99 101
WD1500HLHX + OCZ Synapse Cache 120 GB 150 99 99 98 100

Как и в случае с Crysis 2, S.T.A.L.K.E.R. Call of Pripyat от ускорения дисковой подсистемы масштабируется не слишком хорошо: минимальное суммарное время загрузки всех четырех тестов в этом бенчмарке составляет около 97—98 секунд. Тем не менее, эффект от кэширования заметен и тут, причем в полной мере достигается он уже при втором запуске всех систем, кроме одиночного WD VelociRaptor. В отличие от других участников теста, этот жесткий диск не получает прибавки в скорости от систем кэширования Windows и уступает более быстрым системам порядка 25 секунд. Отдельно подчеркнем, что гибрид с OCZ Synapse Cache справился с этим тестом ничуть не хуже Intel Smart Response.

Выводы

Быстрая дисковая подсистема не менее важна, чем разогнанный процессор или мощная видеокарта. Более того, разогнать ее нельзя — можно лишь заменить или дополнить. С появлением гибридных технологий вроде Intel Smart Response и NVELO Dataplex пользователи получили новую возможность повысить производительность ПК, и, как показывает тестирование, в большинстве случаев она оказывается отнюдь не компромиссом. Бесспорно, одиночный SSD обеспечивает более высокую производительность, чем «гибриды», однако его стоимость при ограниченной емкости не позволяет большинству пользователей устанавливать всё, что душе угодно, не обращая внимания на объем данных. Учитывая, что современные игры или профессиональное ПО с легкостью могут занять десяток-другой гигабайт, SSD наиболее популярной емкости в 120 ГБ хватит всего на 8—10 таких инсталляций. В то же время гибридный массив из скоростного жесткого диска и SSD на 60 ГБ обойдется примерно в такую же сумму, однако будет несравнимо более комфортным в использовании, хоть и немного более медленным.

Возвращаясь к сегодняшнему тестированию, можно сделать вывод, что Intel Smart Response на данный момент превосходит разработки других компаний по эффективности. NVELO Dataplex, используемая OCZ для своих SSD Synapse Cache, также хорошо справляется со своими задачами, однако заметно уступает разработке Intel. Впрочем, судя по тому, что в некоторых случаях она все же вырывается вперед, речь идет не о фундаментальном недостатке, а о банальном несовершенстве ПО, которое, как известно, можно исправить и улучшить. Учитывая, что NVELO в первую очередь позиционирует Dataplex как решение для серверных систем, в активном развитии программной части можно не сомневаться.

И, наконец, сравнивая Intel Smart Response и OCZ Synapse Cache, можем сказать лишь одно: их сравнивать попросту не нужно. Smart Response работает только на Intel Z68, и на этом чипсете организация именно этого массива будет лучшим решением. На всех других платформах такой возможности попросту нет, и там Synapse Cache будет великолепным способом получить отзывчивость системы с SSD, не жертвуя емкостью HDD.

Оборудование для тестирования было предоставлено следующими компаниями:

Детальное исследование влияния SSD-кэширования на производительность жестких дисков

Почти два года назад в свет вышел топовый на тот момент чипсет Intel Z68 , а вместе с ним дебютировала и технология Smart Response. Казалось бы, новая, но на деле имеющая глубокие корни - идея совместить в одной системе сильные стороны традиционных винчестеров и твердотельных накопителей давно витала в воздухе. Что для этого нужно? Нужно к винчестеру добавить некоторый объем флэша в качестве кэш-буфера. В идеальном случае в него со временем должны попасть секторы, к которым система обращается чаще всего, что и приведет к серьезному повышению производительности - доступ к SSD осуществляется быстрее. А на винчестере будут просто лежать данные и редко выполняемый код, благо его емкости для такого достаточно, а скорость запуска редко используемых программ не слишком критична. Еще более идеальным вариантом, конечно, является использование SSD большой емкости, но это решение идеально лишь с точки зрения производительности - стоимость хранения информации на твердотельных накопителях в разы выше, чем на винчестерах. А гибридизация позволяет обойтись относительно небольшим количеством флэша, что недорого и, в идеале, почти столь же быстро, как и использование одного только SSD.

Производители винчестеров подошли к решению вопроса со своей стороны, встраивая флэш-буфер прямо в винчестеры. С такими решениями мы уже знакомились и, в общем и целом, пришли к выводу, что они оправданы. Правда, до последнего времени они встречались лишь среди ноутбучных моделей, в чем есть большой смысл: сделать в условиях ноутбука гибридную систему своими руками (т. е. из нескольких накопителей) не всегда возможно. Поэтому надо ужиматься в один корпус, причем такой, который поместится в ноутбук, что всегда заставляло идти на компромиссы. В частности, те же Seagate Momentus XT содержали лишь 4 ГБ флэш-памяти в первом поколении и 8 ГБ - во втором. А вот в настольном компьютере гибкость больше. Можно, в общем-то, и просто поставить SSD гигабайт так на 240, чтоб туда все программы влезли, и большой винчестер для данных. А можно взять SSD поменьше и воспользоваться Smart Response. Тем более, что год назад количество «пригодных» чипсетов сильно увеличилось : к Z68 добавились новые Z77, H77 (несколько более дешевый), корпоративный Q77 и некоторое количество ноутбучных модификаций. Словом, есть где развернуться.

Поэтому сегодня мы решили более подробно исследовать работу технологии Smart Response. Вкратце-то мы с ней уже познакомились когда изучали Z68, но именно, что вкратце. А вот теперь - посмотрим подробно: что ускоряет, как ускоряет, что замедляет…

Что ускоряем?

В качестве рабочего тела мы решили взять Western Digital Green WD30EZRX, уже знакомый нам по одной из предыдущих статей . Очень хороший, как нам кажется, объект - «зеленая» серия (стало быть, не самая высокая производительность), да и в ее рамках накопитель не самый выдающийся из-за использования пластин низкой (с точки зрения современности) плотности. В общем, как мы уже убедились, использование его в роли системного и единственного - не слишком оправдано. Но может быть, Smart Response позволит нам переломить ситуацию?

Чем ускоряем?

Производители SSD постепенно раскачались, и сегодня выпускают уже немалое количество специальных кэширующих серий накопителей. Хотя, в принципе, подходят и обычные. Тем более, у многих энтузиастов остались некогда купленные твердотельные накопители емкостью 32-64 ГБ (на что, очень может быть, в Intel и рассчитывали, запуская Z68). Но мы решили подойти к вопросу «честно» и взяли кэширующий SSD AData Premier Pro SP300. Впрочем, ориентацию на подобное применение в основном выдает только его емкость в 32 ГБ и интерфейс mSATA. А так - вполне типичный твердотельный накопитель на базе уже немного устаревшего контроллера LSI SandForce SF-2141 с прошивкой версии 5.0.2a. В общем, если кому-то нужен небольшой SSD с таким интерфейсом (например, к такой вот плате в пару), то можно пользоваться. Мы же сегодня используем SP300 по прямому назначению:)

Как ускоряем?

Для работы технологии требуется плата на соответствующем чипсете, как минимум Windows Vista, установленный Intel Rapid Storage и RAID-режим дискового контроллера. Абсолютно все эти условия нашим стандартным тестом выполняются. В том числе, и RAID-режим, который мы используем всегда (даже для одиночных накопителей) как раз ради совместимости (т. е. пригодности для сравнения) результатов.

А дальше - все просто. Обнаружив наличие свободного SSD после загрузки компьютера, Intel Rapid Storage предлагает включить «ускорение работы». Далее нужно выбрать SSD, кэшируемый накопитель (если их несколько, как в нашем случае), определиться с выделяемой для кэширования емкостью (20 ГБ или весь объем SSD, но не более 64 ГБ - это полезно, если хочется «откусить» кусочек от большого накопителя, а оставшуюся часть использовать «нормальным» образом) и, самое главное, выбрать режим кэширования. Последних два: Enhanced и Maximized, отличающихся подходом к записи. Первый (который и выбран по умолчанию) ее, фактически, не кэширует - данные попадают на SSD только по решению драйвера: в основном по критерию частоты использования. Второй же, по сути, встраивает SSD между винчестером и системой: практически все операции записи перенаправляются именно на твердотельный накопитель, а на винчестер копируются уже с него - большими порциями и спустя определенный промежуток времени. Понятно, что вести они должны себя по-разному: в первом случае остается больше места для быстрого запуска программ, зато второй в теории должен позволять сильно ускорить операции записи со случайным доступом. Однако в нем больше вероятность вытеснения полезных данных чем-нибудь, что планировалось просто «сбросить и забыть», да к тому же есть определенная вероятность потерять данные: а вдруг SSD выйдет из строя до того, как успеют обновиться файлы на винчестере? В общем, Intel рекомендует использовать Enhanced, но мы, естественно, проверили оба режима.

Методика тестирования

Методика подробно описана в отдельной статье . Там можно познакомиться с используемым аппаратным и программным обеспечением.

Тестирование

Буферизованные операции



Тот самый случай, когда ускориться ничего в принципе не может, зато может замедлиться: одно дело - записать что-то в буфер винчестера, и совсем другое - хаотические метания драйвера в попытках понять, нет ли этих данных на SSD (при чтении) и что вообще с ними надо делать (при записи). В общем итоге, как и следовало ожидать, ничего хорошего.

Время доступа

Запросы идут по всем 3 терабайтам винчестера, так что нет ничего удивительного, что в SSD они ничего не находят. Но хоть медленнее не становится - и то хорошо.

Здесь хорошо видно отличие режима Maximized ото всех остальных: записали на SSD, получили ответ о том, что операция выполнена успешно, и можно к следующим операциям переходить, а не ждать ответа именно от винчестера, что, как видим, требует в 50 раз больше времени.



В AS SSD та же картина. Только запись ускорилась сравнительно с Everest в «обычных» режимах, но не в Maximized - там уже и улучшать-то нечего:)

Последовательные операции

С определенного момента читать начинаем с SSD, а не с винчестера, а первый у нас пошустрее (хоть и не какая-нибудь модель «реактивной» производительности), так что все ускоряется. А вот в Maximized все плохо из-за усложненной логики: сначала драйвер проверяет, не были ли эти данные недавно записаны на SSD, а потом уже обращается к винчестеру, так что порцесс замедляется.

При записи картина обратная - тут уже режим Maximized способен немного увеличить производительность. Особенно на небольших блоках, что для SSD является более удобной операцией. А вот Enhanced лишь замедляет процесс: ведь нужно не только записать данные на винчестер, но и провести анализ, не стоит ли их сразу же и в кэш поместить.

В общем, как видим, иногда технология Smart Response способна повысить и производительность операций низкого уровня, но способна и понизить ее, как только мы переходим к нагрузке другого типа. Причем, как и следовало ожидать, Enhanced и Maximized по поведению отличаются кардинально.

Случайный доступ

Что естественно, при чтении данных все ведут себя одинаковым образом: запросы-то непосредственно к винчестеру. Но есть и нюансы: как видим, при большом количестве запросов гибридный накопитель из-за накладных программных расходов оказывается медленнее, чем собственно винчестер. Не так чтобы очень - каких-то 15%. Но и этим пренебрегать не стоит.

А здесь отличается только режим Maximized из-за слишком уж сложной логики работы: быстро записываем данные на флэш, получаем следующий запрос, выполняем его, получаем следующий - и выясняем, что пора бы уже данные предыдущих записать на винчестер. В общем, несмотря на то, что на совсем низком уровне, как мы видели выше, этот режим сильно ускоряет накопитель, на практике это способно не дать ничего или даже обеспечить отрицательный эффект.




Что особенно отчетливо наблюдается в шаблонах баз данных, где Enhanced не дает ничего (почти ничего - немного, все же, скорость падает), а Maximized умудряется замедлить винчестер (хотя, казалось бы, куда уж дальше). Впрочем, как раз при большой доле операций записи все варианты приходят к общему знаменателю, так что это немного другая проблема - слишком запутанные алгоритмы.

Производительность в приложениях

Вот, собственно, то, ради чего все затевалось - производительность вырастает в два и более раз. Даже VelociRaptor в PCMark7 набирает лишь 2737 баллов, а это самый быстрый винчестер в настольном сегменте - так что, казалось бы, вот оно счастье. Но не будем спешить открывать шампанское - у нас еще много тестов.

На трассе «защитника» выигрыш в скорости уже приблизился к трехкратному.

Режим Maximized отыгрался за два предыдущих случая и показал, что когда речь идет о записи данных, именно он может оказаться самым быстрым.

И звездный час технологии - тут даже порядок величин разный. Одиночный SSD, конечно же, в пару раз быстрее (если говорить о высокопроизводительных моделях), но это уже разы. А от «обычных» винчестеров гибридную систему отделяет уже порядок величин.

На «игровой» трассе прирост скромнее, но он все-таки есть. Причем такой, что, опять же, даже самым быстрым винчестерам нечего ловить рядом с «зеленой» моделью, ускоренной при помощи Smart Response.

Приехали. Даже если не обращать внимание на то, что Maximized «завалил» работу на шаблоне ContentCreation (это-то легко поддается объяснению), остальные результаты оптимизма тоже не вызывают. Почему же так различается поведение PCMark7 и NASPT? А они работают по-разному. В PCMark7 есть семь записанных трасс, имеющих не такой уж большой суммарный объем. Причем прогоняются они по три раза, и первый - столь же медленный, как и при использовании винчестера. Однако ко второму все данные уже оказываются на SSD, так что тестируем мы по большей части именно его. Причем, заметим, три трассы все равно ускорить не удалось.

В NASPT тоже используется многократный запуск тестов, но всех - включая и шаблоны, «ворочающие» файлами по 32 ГБ. Таким образом, между двумя исполнениями «рабочих» шаблонов в обе стороны успевает «пролететь» пара сотен гигабайт. И каким бы умным ни был драйвер, в подобном раскладе, судя по всему, его мыслительных способностей недостаточно для того, чтобы разобраться, что надо держать в кэше, а что «записали и забыли». Если немного изменить методику тестирования, «прогоняя» несколько раз только группы из указанных шаблонов, подыграв тем самым технологии, все становится замечательно - начиная со второго раза скорость резко возрастает. Однако очевидно, что в реальной жизни бывает всякое: и «хорошие» ситуации, и «плохие», так что неудивительно, что и в тестировании оказались и те, и другие.

Эту диаграмму мы помещаем, скорее, из озорства, однако раз уж у нас есть результаты, то почему бы на них не посмотреть? А пример весьма показательный и открытым текстом намекающий на то, что пытаться ускорить при помощи Smart Response несистемные диски смысла не имеет. Впрочем, остановимся на этом вопросе чуть более подробно.

Работа с большими файлами

Как и следовало ожидать, никакого эффекта - кэширование при помощи технологии Smart Response не упреждающее. Да и упреждающее не слишком бы помогло при последовательном (пусть и многопоточном в одном тесте) чтении объема данных, равного полному объему флэш-кэша.

При записи данных Smart Response сильно замедляет работу. В максимальной степени - при использовании режима Maximized, что понятно: попытка реализовать отложенную запись 32 ГБ данных при помощи флэшки на те же 32 ГБ изначально обречена на провал. Ну а в режиме Enhanced этой проблемы нет, но есть другая: драйверу надо данные не только записывать, но и анализировать для последующего (возможного) использования. Так что неудивительно, что «прямая запись» оказывается самой быстрой - тут-то никаких сложностей нет.

Вот что иногда может улучшиться - так это производительность псевдослучайной записи одновременно с чтением. И то - незначительно. При последовательном же доступе к информации Smart Response немного замедляет работу. Тоже - незначительно.

Общий средний балл

Несмотря на все виденное выше, мы получили вполне уверенный прирост от Smart Response в среднем. Почему? Ну, как мы видели, в том же PCMark7 выигрыш очень весомый, что оказалось лишь частично скомпенсировано проигрышем в других тестах. К тому же низкоуровневая синтетика часто ведет себя очень интересным образом, причем далеко не все выкрутасы SR были показаны выше. Для примера рассмотрим пару шаблонов AS SSD, активно используемых нами в тестах SSD, но обычно «спрятанных с глаз» при тестировании винчестеров.

Все просто - тест работает с файлом размером 1 ГБ, который, естественно, мгновенно оказывается на SSD, так что в режиме Enhanced мы, практически, SSD и измерили. Maximized из-за своей специфики медленно работает с одним потоком чтения (накладные расходы сравнимы с основными), хотя даже тут «ускоряет» винчестер в 4 раза. Ну а на 64 потоках - во все 20 раз.

Запись практически ничего не дает Enhanced, поскольку данные все равно приходится записывать в файл на винчестере, зато если выбрать режим Maximized, получаем подтверждение рекламы Smart Response: ваш HDD будет работать как SSD! :) Такие результаты, естественно, тоже сказались на среднем балле, хотя, как видим, общий итог не такой уж и внушительный.

С подробными же результатами всех тестов, как мы и обещали, можно познакомиться, скачав таблицу в формате Microsoft Excel .

Итого

Анонс Z68 и Smart Response заинтересовал многих красотой идеи: берем маленький и дешевый SSD, емкий винчестер и… Получаем быструю гибридную систему хранения данных, собравшую в себе плюсы обеих технологий. Многим нравилось, что SSD вроде как будет кэшировать весь винчестер, что казалось преимуществом по сравнению с использованием SSD и HDD по отдельности - когда дисковая система четко разделена на «быструю» и «медленную» части. Словом, сплошной профит. Однако реальное положение дел оказалась чуть-чуть более сложным и неоднозначным.

Во-первых, как мы видим, от кэширования всего жесткого диска больше вреда, чем пользы - многие «типично винчестерные» операции замедляются, а не ускоряются. Во-вторых, дала трещину концепция «маленький и дешевый», поскольку сильно упали цены на твердотельные накопители. Работать над Smart Response в Intel начали порядка трех лет назад (может, двух с половиной, но не меньше - два года назад уже готовые продукты появились), когда стоимость 1 ГБ информации на твердотельном накопителе составляла порядка 3 долларов. Сейчас она упала ниже одного доллара, причем, поскольку снижение происходило в основном за счет увеличения плотности новых микросхем, цена от объема зависит нелинейным образом - чем больше, тем относительно дешевле. В практическом смысле это приводит к тому, что сегодня твердотельные накопители на 32 и 128 ГБ по цене различаются всего в два раза, а в абсолютных цифрах вся экономия скукоживается до примерно 50 долларов. А что такое 128 ГБ? Это емкость, достаточная для операционной системы и большого количества прикладных программ. У многих пользователей еще и на хранение данных при этом место останется. Ну а для той информации, скорость доступа к которой не критична, в настольной системе можно просто использовать винчестер большого объема. Самое же главное, что такой подход дает предсказуемость, которой не может похвастаться Smart Response, т. е., независимо от сценариев работы, программы всегда запускаются быстро . А не как получится:) В гибридной же системе может быть почти так же быстро, как с SSD, а может быть и столь же медленно, как при использовании одного лишь винчестера. Говоря простым языком, если какой-нибудь геймер день за днем играет в одну и ту же игру, то от Smart Response он получит такой прирост, как мы выше видели на трассе «Gaming» PCMark7 - ускорение в весомые два-три раза. А вот если у него установлен десяток игр, и каждый раз он выбирает из них одну случайным образом (что называется, «под настроение»), то получит он… шиш с маслом, который нам продемонстрировал NASPT: данные в флэш-кэше будут постоянно меняться, так что загрузка уровней, к примеру, останется столь же медленной, как и при использовании только винчестера: ведь, в основном, именно он и будет работать.

С другой стороны, назвать технологию бесполезной мы тоже не можем - все зависит от сценария использования. В том же игровом компьютере может быть интересной схема с двумя SSD и винчестером. Просто потому, что современные игры велики по объему, и держать их на основном твердотельном накопителе накладно - слишком большой и дорогой требуется. Но проблем можно избежать. К примеру, ставим SSD на 128 ГБ - под систему и основные приложения. Для игр и прочих «тяжелых» программ, которые не поместятся на первом накопителе, используем быстрый винчестер относительно небольшой емкости, дополнительно ускоренный при помощи SSD на 32 ГБ. А для хранения всяких мультимедийных данных, типа фильмов и прочего (что нынче нередко «живет» в больших количествах и на игровых компьютерах) - еще один винчестер. Большой по объему, низкооборотистый (стало быть, экономичный) и безо всяких «бустеров», которые при таком сценарии использования могут только помешать, но не помочь. Сложно? Дорого? Да, но вполне реализуемо. И такой способ использования разных технологий как раз и позволяет получить тот максимум, на который они способны.

В общем, как видим, несмотря на снижение цен на флэш-память (и, соответственно, твердотельные накопители), технология Smart Response до сих пор имеет право на жизнь, поскольку в некоторых сценариях использования увеличивает производительность системы хранения данных. Важно только учитывать, что панацеей на все случаи жизни она не является: где-то полезна, а где-то и напротив - вредна. Таким образом, прежде чем ей пользоваться, стоит заранее взвесить все pro и contra, понять, что именно вы собираетесь сделать и как это должно работать. Впрочем, это верно для всех современных технологий.

Недавно я столкнулся с проблемой ускорения работы дисковой подсистемы, которая предусмотрена в ультра буке Lenovo U 530 (и других подобных моделей). А началось все с того, что выбор пал на этот ноутбук для замены более старого.

Данная серия имеет несколько конфигураций, которые можно посмотреть по этой ссылке: http ://shop .lenovo .com /ru /ru /laptops /lenovo /u -series /u 530-touch /index .html #tab -"5E =8G 5A :85_E 0@0:B 5@8AB 8:8

Я взял вариант с процессором Intel Core -I 7 4500U , 1Тб HDD + 16 Гб SSD кэша.

Примечание: в данном ультрабуке и аналогичных используется SSD в формате M2: http://en.wikipedia.org/wiki/M.2

В дальнейшем при работе с ним как то присутствие кэша не наблюдалось, начал разбираться как же все это работает?

В чипсетах Intel (в частности Intel Series 8) имеется такая технология как Intel rapid storage technology (подробнее о ней можно прочитать по этой ссылке: http ://www .intel .ru /content /www /ru /ru /architecture -and -technology /rapid -storage -technology .html ).

В этой технологии есть функция Intel ® Smart Response , которая и позволяет использовать вариант гибридного SSHD или же HDD + SDD для ускорения дисковой подсистемы.

Если вкратце - то она позволяет хранить часто используемые файлы на SSD диске и при последующих запусках файлов читать их с SSD диска, что заметно улучшает производительность всей системы в целом (подробнее о Smart Response по этой ссылке:

2)Использовать технологию Windows ReadyBoost (http://ru.wikipedia.org/wiki/ReadyBoost)

3)Использовать вариант ExpressCache

Примечание: многие наверняка видели инструкции в интернете по переносу файла гибридизации на SSD, так вот, на своем опыте проверил, это НЕ РАБОТАЕТ, так как даже в этом случае, когда Вы создаете раздел гибридизации, все равно используется технология Intel Rapid Storage . Другими словами, режим гибридизации уже невиндовый , а управляет им данная интеловская технология, а поскольку у нас она не работает, то кроме бесполезного раздела гибридизации на SSD Вы ничего не получите, соответственно работать это не будет.

А теперь опишу более подробно, как настроить каждый из трех вариантов.

1.Использовать стороннюю утилиту от SanDisk - ExpressCache

Распишу по пунктам действия:

Если Вы еще ни разу не пользовались этой утилитой, то делаем следующее:

1)Скачиваем ее, например отсюда: http ://support .lenovo .com /us /en /downloads /ds 035460

2)Заходим в “Управление дисками” и удаляем все разделы с SSD диска;

3)Устанавливаем программу Express Cache на компьютер, перезагружаемся и все готово) Программа сама сформирует нужный раздел и будет его использовать.


4)Чтобы проверить работу, вызываем командную строку в режиме администратора, и вводим eccmd.exe -info

5)В результате, должна быть похожая картинка:

Рисунок 6 - проверка работы кэша при запуске утилиты eccmd.exe -info


2.Использовать технологию Windows ReadyBoost

Для использования этой технологии необходимо:

2)Создаем один основной раздел на SSD ;

3)Новый раздел появится в виде нового диска со своей буквой. Заходим в Мой компьютер и жмем правой кнопкой на диске и в меню выбираем “свойства”, далее вкладку “Ready Boost ”.

4)Во вкладке выделяем опцию “Использовать это устройство” и ползунком выделяем все имеющееся пространство.

После этого SSD будет ускорять работу файловой системы используя технологию Microsoft Windows Ready Boost .

Не знаю, насколько она эффективна для работы с SSD , так как изначальное ее предназначение было - использование в качестве устройств хр анения обычные NAND Flash в виде брелоков, а скорость доступа к таким устройствам намного ниже, чем у mSATA SSD


3.Использовать вариант ExpressCache + перенос SWAP файла на отдельный раздел SSD .

На мой взгляд - это самый оптимальный для данного случая метод, так как, с одной стороны мы ускоряем работу со свопом, перенеся его на SSD , а так же обеспечиваем работу с кэшем. Данный метод скорее подходи для ультра буков с объемом SSD 16 и более Гб.

Как это сделать?

1)Заходим в “Управление дисками” и удаляем все разделы с SSD диска;

2)На SSD нужно два раздела, один делаем сами, второй делается программой Express Cache ;

3)Создаем раздел для свопа, например: 6 Гб вполне достаточно для ультра бука с 8Гб ОЗУ (RAM);

5)Теперь нам нужно перенести своп с диска C : на новый диск SSD . Для этого заходим в параметры Системы, далее “Дополнительные параметры системы”.


Рисунок 8- Дополнительные параметры системы

Во вкладке “Дополнительно” нажимаем на кнопку “Параметры* ”, вкладка “Дополнительно** ” и далее кнопку “Изменить** ”. Отключаем “Автоматический режим*** ”, затем из списка выбираем нужный для нас диск со свопом, а затем пробуем выбрать опцию “Размер по выбору системы*** ” и нажимаем кнопку “Задать*** ”. Если система ругнулась, то это, скорее всего из-за того, что диск в 6Гб. система считает слишком маленьким, но если Вы посмотрите снизу в окне рекомендуемый размер файла, то он будет колебаться в районе 4,5 Гб, что даже меньше нашего раздела, поэтому делаем следующее - выбираем опцию “Указать размер*** ” и в поле “Исходный размер*** ” записываем тот рекомендуемый снизу размер файла. В поле “Максимальный размер*** ” можно написать весь объем раздела, затем жмем кнопку “Задать*** ”.
Далее, нам нужно отключить уже имеющийся своп, для этого из списка дисков выбираем на том, где в данный момент располагается своп (например C :), и ниже в опциях выбираем - “Без файла подкачки*** ”, а затем “Задать*** ”.
Все -т еперь у Вас файл подкачки будет располагаться на SSD диске.
Ждем “Ок *** ” и перегружаем компьютер.

6)Можно проверить, есть ли файл на диске или нет, заходим на диск C : (в проводнике должна быть включена функция видимости скрытых файлов или с помощьюTotal Commander ).


Рисунок 12 - Видимость SWAP раздела SSD

Файл подкачки называется pagefile . sys , он должен быть на новом диске, а на старом его быть не должно.

7)Теперь нужно установить раздел для кэширования, для этого делаем все, что было описано в пункте 1.

В итоге после проделанных действий мы получаем ускорение всей системы в целом.

Рисунок 13 - Разделы на SSD для SWAP и SSD кэша

Желаю Вам быстрой производительности Вашей системы и долгой работы SSD J

Буду рад комментариям к моей статье и всяческим рецензиям) Спасибо!

Похожие статьи