Объектно-ориентированное программирование. Особенности объектно-ориентированного программирования

02.09.2019

Класс (classes ) является типом данных, определяемых пользователем. В классе задаются свойства и поведение какого-либо предмета или процесса в виде полей данных и функций для работы с ними.

Существенным свойством класса является то, что детали его реализации скрыты от пользователей класса за интерфейсом. Таким образом, класс как модель объекта реального мира является черным ящиком, замкнутым по отношению к внешнему миру.

Идея классов является основной объектно-ориентированного программирования (ООП). Основные принципы ООП были разработаны еще в языках Simula-67 иSmallTalk, но в то время не получили широкого распространения из-за трудностей освоения и низкой эффективности реализации.

Конкретные величины типа данных «класс» называют экземплярами класса илиобъектами (objects ) .

Подпрограммы, определяющие операции над объектами класса, называются методами (methods ). Вызовы методов называютсясообщениями (messages ). Весь набор методов объекта называется протоколом сообщений (messageprotocol), илиинтерфейсом сообщений (message interface ) объекта. Сообщение должно иметь, по крайней мере, две части: конкретный объект, которому оно должно быть послано, и имя метода, определяющего необходимое действие над объектом. Таким образом, вычисления в объектно-ориентированной программе определяются сообщениями, передаваемыми от одного объекта к другому.

Объекты взаимодействуют между собой, посылая и получая сообщения. Сообщение – это запрос на выполнение действия, содержащий набор необходимых параметров. Механизм сообщения реализуется с помощью вызова соответствующих функций. С помощью ООП легко реализуется так называемая событийно-управляемая модель, когда данные активны и управляют вызовом того или иного фрагмента программного кода.

ООП - это метод программирования, развивающий принципы структурного программирования и основанный на следующих абстракциях данных:

I. Инкапсуляция : объединение данных с процедурами и функциями в единый блок программного кода (данные и методы работы с ними рассматриваются как поля объекта).

II. Наследование – передача методов и свойств от предка к потомку, без необходимости написания дополнительного программного кода (наличие экземпляров класса; потомки, прародители, иерархия).

III. Полиморфизм – возможность изменения одинаковых по смыслу свойств и поведения объектов в зависимости от их типа (единое имя для некого действия, которое по-разному осуществляется для объектов иерархии).

Инкапсуляция

Впервые понятие инкапсуляции было использовано в языках, поддерживающих так называемый абстрактный подход к программированию (например, Модула-2). Основная идея абстрактного подхода заключается в том, чтобы, скрыв от пользователя структуру информации об объекте, дать ему возможность получать необходимые для работы с объектом данные только через процедуры, относящиеся к этому объекту. Такой прием позволяет значительно повысить надежность и мобильность разработанного программного обеспечения. Надежность повышается вследствие того, что все процедуры для работы с данными об объекте относительно просты и прозрачны, а значит, могут быть разработаны более качественно. При изменении структуры данных достаточно переработать только программы, непосредственно связанные с объектом, а более сложные программы, использующие данный объект, изменять не нужно. Данное обстоятельство повышает как надежность, так и мобильности созданных программ.

Наследование

Во второй половине 1980-х годов для многих разработчиков программного обеспечения стало очевидным, что одной из наилучших возможностей для повышения производительности их труда является повторное использование программ. Вполне очевидно, что абстрактные типы данных с их инкапсуляцией и управлением доступом должны использоваться многократно. Проблема, связанная с повторным использованием абстрактных типов данных, почти во всех случаях заключается в том, что свойства и возможности существующих типов не вполне подходят для нового использования. Старые типы необходимо, по крайней мере минимально, модифицировать. Такие модификации могут быть трудновыполнимыми и требовать от человека понимания части, если не всего целиком, существующего кода. Кроме того, во многих случаях модификации влекут за собой изменения во всех программах-клиентах.

Вторая проблема, связанная с программированием, ориентированным на данные, заключается в том, что все определения абстрактных типов данных являются независимыми и находятся на одном и том же уровне иерархии. Это часто не позволяет так структурировать программу, чтобы она соответствовала своей проблемной области. Во многих случаях исходная задача содержит категории связанных между собой объектов, являющихся как наследниками одних и тех же предков (т.е. находящихся на одном и том же уровне иерархии), так и предками и наследниками (т.е. состоящих в отношении некоторой субординации друг с другом).

Наследование позволяет решить как проблемы модификации, возникающие в результате повторного использования абстрактного типа данных, так и проблемы организации программ. Если новый абстрактный тип данных может наследовать данные и функциональные свойства некоторого существующего типа, а также модифицировать некоторые из этих сущностей и добавлять новые сущности, то повторное использование значительно облегчается без необходимости вносить изменения в повторно используемый абстрактный тип данных. Программисты могут брать существующий абстрактный тип данных и создавать по его образцу новый тип, соответствующий новым требованиям задачи. Предположим, что в программе есть абстрактный тип данных для массивов целых чисел, включающий в себя операцию сортировки. После некоторого периода использования программа модифицируется и требует наличия не только абстрактного типа данных для массивов целых чисел с операцией сортировки, но и операции вычисления арифметического среднего для элементов объектов, представляющих собой массивы. Поскольку структура массива скрыта в абстрактном типе данных, без наследования этот тип должен быть модифицирован путем добавления новой операции в эту структуру. При наличии наследования нет необходимости в модификации существующего типа; можно описать подкласс существующего типа, поддерживающий не только операцию сортировки, но и операцию для вычисления среднего арифметического.

Класс, который определяется через наследование от другого класса, называется производным классом (derived class ) , илиподклассом (subclass ) . Класс, от которого производится новый класс, называетсяродительским классом (parent class ) , илисуперклассом (superclass ) .

В простейшем случае класс наследует все сущности (переменные и методы) родительского класса. Это наследование можно усложнить, введя управление доступом к сущностям родительского класса.

Это управление доступом позволяет программисту скрыть части абстрактного типа данных от клиентов. Такое управление доступом обычно есть в классах объектно-ориентированных языков. Производные классы представляют собой другой вид клиентов, которым доступ может быть либо предоставлен, либо запрещен. Чтобы это учесть, некоторые объектно-ориентированные языки включают в себя третью категорию управления доступом, часто называемую защищенной (protected), которая используется для предоставления доступа производным классам и запрещения доступа другим классам.

В дополнение к наследуемым сущностям производный класс может добавлять новые сущности и модифицировать методы. Модифицированный метод имеет то же самое имя и часто тот же самый протокол, что и метод, модификацией которого он является. Говорят, что новый метод замещает (override) наследуемую версию метода, который поэтому называется замещаемым (overriden) методом. Наиболее общее предназначение замещающего метода - выполнение операции, специфической для объектов производного класса и не свойственной для объектов родительского класса.

Разработка программы для объектно-ориентированной системы начинается с определения иерархии классов, описывающей отношения между объектами, которые войдут в программу, решающую поставленную задачу. Чем лучше эта иерархия классов соответствует проблемной части, тем более естественным будет полное решение.

Недостаток наследования как средства, облегчающего повторное использование кода, заключается в том, что оно создает зависимость между классами в иерархии наследования. Это умаляет одно из преимуществ абстрактных типов данных, заключающееся в их взаимной независимости. Конечно, не все абстрактные типы данных должны быть полностью независимыми, но в общем случае независимость абстрактных типов данных является одним из их самых сильных положительных свойств. Однако увеличение возможности повторного использования абстрактных типов данных без создания зависимостей между некоторыми из них может оказаться трудной задачей, если не совсем безнадежной.

Полиморфизм

Третьим свойством объектно-ориентированных языков программирования является вид полиморфизма, обеспечиваемый динамическим связыванием сообщений с определениями методов. Это свойство поддерживается путем разрешения определения полиморфных переменных типа родительского класса, которые также могут ссылаться на объекты любых подклассов данного класса. Родительский класс может определять метод, замещаемый в его подклассах. Операции, определяемые этими методами, похожи, но должны уточняться для каждого класса в иерархии. Когда такой метод вызывается через полиморфную переменную, этот вызов динамически связывается с методом в соответствующем классе. Одна из целей динамического связывания - обеспечить более легкое расширение программных систем при их разработке и поддержке. Такие программы можно писать для операций над объектами настраиваемых классов. Эти операции являются настраиваемыми в том смысле, что их можно применять к объектам любого класса, производного от одного и того же базового класса.

Вычисления в объектно-ориентированных языках

Все вычисления в полностью объектно-ориентированном языке выполняются с помощью передачи сообщения объекту для вызова одного из его методов. Ответом на сообщение является объект, возвращающий результат вычислений, выполненных этим методом. Выполнение программы на объектно-ориентированном языке можно описать как моделирование набора компьютеров (объектов), взаимодействующих друг с другом с помощью обмена сообщениями. Каждый объект - абстракция компьютера в том смысле, что он хранит данные и обеспечивает выполнение процессов для манипуляции этими данными. Кроме того, объекты могут передавать и получать сообщения. В сущности, это основные свойства компьютера - хранить и обрабатывать данные, а также передавать и получать сообщения.

Суть объектно-ориентированного программирования состоит в решении задач с помощью идентификации соответствующих реальных объектов и обработки, требуемой для этих объектов; и последующем моделировании этих объектов, их процессов и необходимых связей между ними.

Библиотека визуальных компонентов (Visual Component Library, VCL)

Delphi содержит большое количество классов, предназначенных для быстрой разработки приложений. Библиотека написана на Object Pascal и имеет непосредственную связь с интегрированной средой разработки приложений Delphi.

Все классы VCL расположены на определенном уровне иерархии и образуют дерево (иерархию) классов .

Знание происхождения объекта оказывает значительную помощь при его изучении, так как потомок наследует все элементы объекта-родителя. Так, если свойство Caption принадлежит классу TControl, то это свойство будет и у его потомков, например, у классов TButton и TCheckBox и у компонентов - кнопки Button и независимого переключателя CheckBox соответственно. Фрагмент иерархии классов с важнейшими классами показан на рис.

Кроме иерархии классов, большим подспорьем в изучении системы программирования являются исходные тексты модулей, которые находятся в каталоге SOURCE главного каталога Delphi.

Волею судьбы мне приходится читать спецкурс по паттернам проектирования в вузе. Спецкурс обязательный, поэтому, студенты попадают ко мне самые разные. Конечно, есть среди них и практикующие программисты. Но, к сожалению, большинство испытывают затруднения даже с пониманием основных терминов ООП.

Для этого я постарался на более-менее живых примерах объяснить базовые понятия ООП (класс, объект, интерфейс, абстракция, инкапсуляция, наследование и полиморфизм).

Первая часть, представленная ниже, посвящена классам, объектам и интерфейсам.
Вторая часть иллюстрирует инкапсуляцию, полиморфизм и наследование

Основные понятия ООП

Класс
Представьте себе, что вы проектируете автомобиль. Вы знаете, что автомобиль должен содержать двигатель, подвеску, две передних фары, 4 колеса, и т.д. Ещё вы знаете, что ваш автомобиль должен иметь возможность набирать и сбавлять скорость, совершать поворот и двигаться задним ходом. И, что самое главное, вы точно знаете, как взаимодействует двигатель и колёса, согласно каким законам движется распредвал и коленвал, а также как устроены дифференциалы. Вы уверены в своих знаниях и начинаете проектирование.

Вы описываете все запчасти, из которых состоит ваш автомобиль, а также то, каким образом эти запчасти взаимодействуют между собой. Кроме того, вы описываете, что должен сделать пользователь, чтобы машина затормозила, или включился дальний свет фар. Результатом вашей работы будет некоторый эскиз. Вы только что разработали то, что в ООП называется класс .

Класс – это способ описания сущности, определяющий состояние и поведение, зависящее от этого состояния, а также правила для взаимодействия с данной сущностью (контракт).

С точки зрения программирования класс можно рассматривать как набор данных (полей, атрибутов, членов класса) и функций для работы с ними (методов).

С точки зрения структуры программы, класс является сложным типом данных.

В нашем случае, класс будет отображать сущность – автомобиль. Атрибутами класса будут являться двигатель, подвеска, кузов, четыре колеса и т.д. Методами класса будет «открыть дверь», «нажать на педаль газа», а также «закачать порцию бензина из бензобака в двигатель». Первые два метода доступны для выполнения другим классам (в частности, классу «Водитель»). Последний описывает взаимодействия внутри класса и не доступен пользователю.

В дальнейшем, несмотря на то, что слово «пользователь» ассоциируется с пасьянсом «Косынка» и «Microsoft Word», мы будем называть пользователями тех программистов, которые используют ваш класс, включая вас самих. Человека, который является автором класса, мы будем называть разработчиком.

Объект
Вы отлично потрудились и машины, разработанные по вашим чертежам, сходят с конвейера. Вот они, стоят ровными рядами на заводском дворе. Каждая из них точно повторяет ваши чертежи. Все системы взаимодействуют именно так, как вы спроектировали. Но каждая машина уникальна. Они все имеют номер кузова и двигателя, но все эти номера разные, автомобили различаются цветом, а некоторые даже имеют литьё вместо штампованных дисков. Эти автомобили, по сути, являются объектами вашего класса.

Объект (экземпляр) – это отдельный представитель класса, имеющий конкретное состояние и поведение, полностью определяемое классом.

Говоря простым языком, объект имеет конкретные значения атрибутов и методы, работающие с этими значениями на основе правил, заданных в классе. В данном примере, если класс – это некоторый абстрактный автомобиль из «мира идей», то объект – это конкретный автомобиль, стоящий у вас под окнами.

Интерфейс
Когда мы подходим к автомату с кофе или садимся за руль, мы начинаем взаимодействие с ними. Обычно, взаимодействие происходит с помощью некоторого набора элементов: щель для приёмки монеток, кнопка выбора напитка и отсек выдачи стакана в кофейном автомате; руль, педали, рычаг коробки переключения передач в автомобиле. Всегда существует некоторый ограниченный набор элементов управления, с которыми мы можем взаимодействовать.

Интерфейс – это набор методов класса, доступных для использования другими классами.

Очевидно, что интерфейсом класса будет являться набор всех его публичных методов в совокупности с набором публичных атрибутов. По сути, интерфейс специфицирует класс, чётко определяя все возможные действия над ним.
Хорошим примером интерфейса может служить приборная панель автомобиля, которая позволяет вызвать такие методы, как увеличение скорости, торможение, поворот, переключение передач, включение фар, и т.п. То есть все действия, которые может осуществить другой класс (в нашем случае – водитель) при взаимодействии с автомобилем.

При описании интерфейса класса очень важно соблюсти баланс между гибкостью и простотой. Класс с простым интерфейсом будет легко использовать, но будут существовать задачи, которые с помощью него решить будет не под силу. В то же время, если интерфейс будет гибким, то, скорее всего, он будет состоять из достаточно сложных методов с большим количеством параметров, которые будут позволять делать очень многое, но использование его будет сопряжено с большими сложностями и риском совершить ошибку, что-то перепутав.

Примером простого интерфейса может служить машина с коробкой-автоматом. Освоить её управление очень быстро сможет любая блондинка, окончившая двухнедельные курсы вождения. С другой стороны, чтобы освоить управление современным пассажирским самолётом, необходимо несколько месяцев, а то и лет упорных тренировок. Не хотел бы я находиться на борту Боинга, которым управляет человек, имеющий двухнедельный лётный стаж. С другой стороны, вы никогда не заставите автомобиль подняться в воздух и перелететь из Москвы в Вашингтон.

Все объектно-ориентированные языки используют три базовых принципа объектно-ориентированного программирования:

  • Инкапсуляция . Как данный язык скрывает внутренние особенности реализации объекта?
  • Наследование . Как данный язык обеспечивает возможность многократного использования программного кода?
  • Полиморфизм . Как данный язык позволяет интерпретировать родственные объекты унифицированным образом?

Первым принципом ООП является инкапсуляция. Инкапсуляция – это механизм программирования, связывающий воедино код и данные, которыми он манипулирует, ограждающий их от внешнего доступа и неправильного применения и скрывающий средствами языка детали реализации. Например, предположим, что мы используем класс представляющий объекты типа пера (Pen). Такой класс инкапсулирует внутренние способности объектов рисовать точки, линии и фигуры разной толщины и цвета. Принцип инкапсуляции позволяет упростить задачу программирования в том смысле, что уже нет необходимости беспокоится о многочисленных строках программного кода, который выполняет работу класса пера "за кулисами". Все, что требуется, так - это создание экземпляра класса пера и взаимодействовать с ним путем обращения к его функциям.

Одним из важных аспектов инкапсуляции является защита данных. В идеале данные, характеризующие состояние объекта, должны определяться, как закрытые и недоступные для внешнего окружения. В этом случае внешнее окружение объекта будет вынуждено запрашивать право на изменение или чтение соответствующих значений. Таким образом, понятие инкапсуляции отражает общее правило, согласно которому поля данных объекта не должны быть непосредственно доступны из открытого интерфейса. Если пользователю необходимо изменить состояние объекта, то он должен сделать это не напрямую, а косвенно, с помощью функций чтения (get ()) и модификации (set ()). В С# доступность данных реализуется на уровне синтаксиса с помощью ключевых слов public , private , protected , и protected internal .

В пределах объекта код, данные или и код и данные могут быть закрытыми для других объектов, либо открытыми. Закрытые код и данные известны и доступны из другой части только этого объекта (т.е. только самому объекту). Поэтому к закрытому коду и данным не может быть осуществлен доступ из той части программы, которая существует за пределами данного объекта.

Следующим принципом ООП является наследование , означающее способность языка обеспечить построение определений новых классов на основе определений уже существующих классов. В сущности, наследование позволяет расширить возможности поведения базового класса (называемого также родительским классом ) с помощью построения подкласса (называемого производным или дочерним классом ), наследующего характеристики и функциональные возможности родительского класса. По сути дела такая форма наследования представляет собой повторное использование программного кода одного (базового) класса в других (производных от него) классах. Как правило, в этом случае дочерний класс расширяет возможности базового класса, добавляя к ним некоторые новые возможности, отсутствующие в базовом классе. Такая форма наследования получила название "is-a" (т.е. быть тем же самым, но с более широкими возможностями).


Существует и другая форма многократного использования программного кода – это модель локализации/делегирования (также известная, как отношение локализации "has-a"). Эта форма не используется для создания отношений "класс-подкласс". Вместо этого класс может определить в своем составе некоторую переменную другого класса и открыть часть или все ее функциональные возможности для внешнего окружения. В этом случае класс больше похож на контейнер, в котором содержатся экземпляры других классов.

Третьим принципом ООП является полиморфизм . Он характеризует способность языка одинаково интерпретировать родственные объекты. Эта особенность объектно-ориентированного языка позволяет базовому классу определить множество членов для всех производных классов. Формально это общее членов называют полиморфным интерфейсом. Полиморфный интерфейс для класса строится с помощью определения некоторого произвольного числа виртуальных и абстрактных функций. Виртуальную функцию класса можно изменить в производном классе, а абстрактную функцию можно только переопределить. Когда производные классы переопределяют функции, определенные в базовом классе, то они, по существу, переопределяют свою реакцию на соответствующий запрос. Кроме возможности переопределения функций язык С# предоставляет возможность использовать другую форму полиморфизма – перегрузку функций. Перегрузку следует рассматривать, как дополнительную возможность различать функции с одинаковым названием, отличающихся разным количеством или типом аргументов. Поэтому перегрузку можно применять не только к функциям – членам класса, но и к глобальным функциям.

Общее представление об объектно-ориентированном программировании и его особенностях были рассмотрены в первом уроке. Здесь обобщим изученный в этом курсе материал.

В Python все объекты являются производными классов и наследуют от них атрибуты. При этом каждый объект формирует собственное пространство имен. Python поддерживает такие ключевые особенности объектно-ориентированного программирования как наследование, инкапсуляцию и полиморфизм. Однако инкапсуляцию в понимании сокрытия данных Python поддерживает только в рамках соглашения, но не синтаксиса языка.

В курсе не было уделено внимание множественному наследованию, когда дочерний класс наследуется от нескольких родительских. Такое наследование поддерживается в Python в полной мере и дает возможность в производном классе сочетать атрибуты двух и более классов. При множественном наследовании следует учитывать определенные особенности поиска атрибутов.

Полиморфизм позволяет объектам разных классов иметь схожие интерфейсы. Он реализуется путем объявления в них методов с одинаковыми именами. К проявлению полиморфизма как особенности ООП также можно отнести методы перегрузки операторов.

Кроме наследования, инкапсуляции и полиморфизма существуют другие особенности ООП. Таковой является композиция, или агрегирование, когда класс включает в себя вызовы других классов. В результате при создании объекта от класса-агрегата, создаются объекты других классов, являющиеся составными частями первого.

Классы обычно помещают в модули. Каждый модуль может содержать несколько классов. В свою очередь модули могут объединяться в пакеты. Благодаря пакетам в Python организуются пространства имен.

Преимущества ООП

Особенности объектно-ориентированного программирования наделяют его рядом преимуществ.

Так ООП позволяет использовать один и тот же программный код с разными данными. На основе классов создается множество объектов, у каждого из которых могут быть собственные значения полей. Нет необходимости вводить множество переменных, т. к. объекты получают в свое распоряжение индивидуальные пространства имен. В этом смысле объекты похожи на структуры данных. Объект можно представить как некую упаковку данных, к которой присоединены инструменты для их обработки – методы.

Наследование позволяет не писать новый код, а использовать и настраивать уже существующий за счет добавления и переопределения атрибутов.

Недостатки ООП

ООП позволяет сократить время на написание исходного кода, однако предполагает большую роль предварительного анализа предметной области и проектирования. От правильности решений на этом этапе зависит куда больше, чем от непосредственного написания исходного кода.

Следует понимать, что одна и та же задача может быть решена разными объектными моделями, каждая из которых будет иметь свои преимущества и недостатки. Только опытный разработчик может сказать, какую из них будет проще расширять и обслуживать в дальнейшем.

Особенности ООП в Python

По сравнению со многими другими языками в Python объектно-ориентированное программирования обладает рядом особых черт.

Всё является объектом – число, строка, список, функция, экземпляр класса, сам класс, модуль. Так класс – объект, способный порождать другие объекты – экземпляры.

В Python нет просто типов данных. Все типы – это классы.

Инкапсуляции в Python не уделяется особого внимания. В других языках программирования обычно нельзя получить напрямую доступ к свойству, описанному в классе. Для его изменения может быть предусмотрен специальный метод. В Python же не считается предосудительным непосредственное обращение к свойствам.

И напоследок

Python – это все-таки скриптовый интерпретируемый язык. Хотя на нем пишутся в том числе крупные проекты, часто он используется в веб-разработке, системном администрировании для создания небольших программ-сценариев. В этом случае обычно достаточно встроенных средств языка, "изобретать" собственные классы излишне.

(как расшифровывается ООП) – это, прежде всего, парадигма программирования.
Парадигма программирования определяет то, как программист видит выполнение программы.
Так, для парадигмы ООП характерно, что программист рассматривает программу в виде набора взаимодействующих объектов, в то время как, например, в функциональном программировании программа представляется в виде последовательности вычисления функций. Процедурное программирование или, как его еще правильно называют, классическое операциональное, подразумевает написание алгоритма для решения задачи; при этом ожидаемые свойства конечного результата не описываются и не указываются. Структурное программирование в основном придерживается тех же принципов, что и процедурное, лишь немного дополняя их полезными приемами.
Парадигмы непроцедурного программирования, к которым можно отнести объектно-ориентированную парадигму, имеют совершенно другие идеи.
Определение Гради Буча гласит: “Объектно-ориентированное программирование – это методология программирования, которая основана на представлении программы в виде совокупности объектов, каждый из которых является реализацией определенного класса (типа особого вида), а классы образуют иерархию на принципах наследуемости”.
Структурное и объектно-ориентированное программирование строятся на таком научном методе как декомпозиция — метод, который использует структуру задачи и позволяет разбить решение общей большой задачи на решение последовательности меньших задач. Декомпозиция ООП происходит не по алгоритмам, а по объектам, использующимся при решении задачи. Данная декомпозиция уменьшает размер программных систем благодаря повторному использованию общих механизмов. Известно, что системы визуального программирования или системы, построенные на принципах объектно-ориентированного программирования, являются более гибкими и легче эволюционируют со временем.

История развития ООП берет свое начало в конце 60-х годов. Первым объектно-ориентированным языком был язык программирования Simula, созданный в компьютерном центре в Норвегии. Язык предназначался для моделирования ситуаций реального мира. Особенностью Simula было то, что программа, написанная на языке, была организована по объектам программирования. Объекты имели инструкции, называемые методами, и данные, которые назывались переменными; методы и данные определяли поведение объекта. В процессе моделирования объект вел себя согласно своему стандартному поведению и, в случае необходимости, изменял данные для отражения влияния назначенного ему действия.

Сегодня существует достаточное количество объектно-ориентированных языков программирования , наиболее популярными из которых в настоящее время являются C++, Delphi, Java, Visual Basic, Flash. Но, кроме того, многие языки, которые принято причислять к процедурной парадигме, тоже обладают свойствами ООП, имея возможность работать с объектами. Так, объектно-ориентированное программирование в C — это большой раздел программирования на данном языке, то же самое касается ООП в python и многих других структурных языках.

Говоря об ООП, часто всплывает еще одно определение — визуальное программирование . Оно дополнительно предоставляет широкие возможности использования прототипов объектов, которые определяются как классы объектов.
События. Во многих средах визуального программирования реализована характеристика (помимо инкапсуляции, полиморфизма и наследования) объекта – событие. Событиями в объектно-ориентированном программировании называется возможность обработки так называемых сообщений (или событий), получаемых от операционной системы Windows или самой программы. Данный принцип характерен для всех компонентов среды, которые обрабатывают различные события, возникающие в процессе выполнения программы. По сути, событие — это некоторое действие, которое активизирует стандартную реакцию объекта. Событием может рассматриваться, например, щелчок по кнопке мыши, наведение курсора мыши на пункт меню, открытие вкладки и т.п. Очередность выполнения тех или иных действий определяется как раз таки событиями, возникающими в системе, и реакцией на них объектов.
Классы и объекты в ООП — различные понятия. Понятие класса в ООП – это тип данных (такой же как, например, Real или String), а объект – конкретный экземпляр класса (его копия), хранящийся в памяти компьютера как переменная соответствующего типа.
Класс является структурным типом данных. Класс включает описание полей данных, а также процедур и функций, которые работают с этими полями данных. Метод ООП – это и есть такие процедуры и функции применительно к классам.
Классы имеют поля (как тип данных запись — record), свойства, которые похожи на поля, но имеют дополнительные описатели, определяющие механизмы записи и считывания данных и методы — подпрограммы, которые направленны на изменение полей и свойств класса.

Основные принципы ООП

Принципы объектно-ориентированного программирования помимо обработки событий – это инкапсуляция, наследование, подклассы и полиморфизм. Они особенно полезны и необходимы при разработке тиражируемых и простых в сопровождении приложений.
Объект объединяет в себе методы и свойства, которые не могут существовать отдельно от него. Поэтому если объект удаляется, то удаляются его свойства и связанные с ним методы. При копировании происходит то же самое: объект копируется как единое целое. Инкапсуляция ООП — это и есть описанная характеристика.

Принцип наследования ООП и подклассы

Абсолютно все объекты создаются на основе классов, при это они наследуют свойства и методы этих классов. В свою очередь классы могут создаваться на основе других классов (родителей), тогда такие классы называют подклассами (потомки). Подклассы наследуют все свойства и методы родительского класса. Кроме того для подкласса или класса-потомка можно определить новые, свои собственные, свойства и методы, а также изменять методы класса-родителя. Изменение свойств и методов родительского класса отслеживается в подклассах, созданных на основе этого класса, а также в объектах, созданных на основе подклассов. В этом и заключается наследование ООП.

Полиморфизм ООП

В объектно-ориентированном программировании полиморфизм характеризуется как взаимозаменяемость объектов с одинаковым интерфейсом. Это можно объяснить так: класс-потомок наследует экземпляры методов класса-родителя, но выполнение этих методов может происходить другим образом, соответствующим специфике класса-потомка, то есть модифицированным.
То есть, если в процедурном программировании имя процедуры или функции однозначно определяет выполняемый код, относящейся к данной процедуре или функции, то в объектно-ориентированном программировании можно использовать одни и те же имена методов для выполнения разных действий. То есть результат выполнения одного и того же метода зависит от типа объекта, к которому применяется данный метод.

На сайте представлена частичная теория объектно-ориентированного программирования для начинающих и ООП примеры решения задач. ООП уроки сайта представляют собой подробные алгоритмы выполнения поставленной задачи. На основе выполнения данных лабораторных работ учащийся сможет в дальнейшем самостоятельно решать другие аналогичные задачи.
Желаем Вам легкого и интересного изучения объектно-ориентированного программирования!

Похожие статьи