Какой ресурс парковок головки в hdd. WDIdle3 - отключаем парковку головок на жестких дисках Western Digital

16.07.2019

Достался мне по случаю винчестер Toshiba MQ01ABD050 (AX002K), который стал использоваться в небольшом стационарном персональном компьютере безвентиляторного исполнения.


Однако через некоторое время на слух стали восприниматься щелчки. Как показало "следствие", ситуация соответствовала описанному ниже.

В ноутбуках иногда встречается проблема, когда жесткий диск каждые 10-20 секунд издает щелчок. Щелчок – это ни что иное как парковка головок жесткого диска.

В некоторых моделях лаптопов происходит периодическая парковка головок жёсткого диска. Наблюдается на разных моделях лаптопов и жёстких дисков в них. Периодичность этого явления зависит от режима работы. При работе от батарей парковка происходит один раз в 10 минут. При работе от сети - 2 раза в минуту. Диски большинства производителей паркуются довольно редко (несколько раз в час). Теоретически, проиводители жёстких дисков дают гарантию, что устройство может выполнить ль 300 до 600 тысяч циклов парковки. Если пересчитать на часы работы жёсткого диска, то это составит явно меньше ожидаемого срока работы ноутбука в целом. Кроме того, в полной тишине звук парковки отчётливо слышен и действует на нервы. Описать звук сложно, он зависит от модели жёсткого диска. Например, его сравнивают со звуком карандаша, падающего плашмя на деревянный стол или как звук ломающейся тонкой стеклянной палочки. Каждый, кто слышал этот звук, не спутает его уже больше ни с чем. Можно не полагаться на слух, а проверить наличие (или отсутствие) этого явления инструментально.

В стандартной версии диска, APM имеет значение 128, в улучшенной – 254 (отключено). У вас закономерно должен возникнуть вопрос, а как вообще парковка головок экономит электроэнергию и ресурс батареи? Дело в том, что противоположный конец головки оснащен катушкой. При подаче "правильного" питания на катушку, она генерирует электромагнитное поле, что позволяет ей перемещаться между двух мощных постоянных магнитов (перемещая при этом противоположный конец). Что интересно, значение APM можно изменить самостоятельно. При использовании в ноутбуках полностью отключать парковку не рекомендуется, т.к. ноутбук это переносной компьютер, а одна из возможностей APM – парковка головок, которая в свою очередь защищает поверхность диска от повреждений при перемещении ноутбука (тряска, сильные вибрации, удары, ускорение). В случае со стационарным ПК парковку во время работы можно отключать, или же установить значение 250-253. Не стоит бояться, что диск перестанет парковать вообще, при отключении как и ранее, будет выполняться парковка головок в безопасную зону.


Проверка состояния настроек параметров привода показала, что тайм-аут перехода в режим ожидания и дополнительное управление электропитания (APM) отключены, так как мой безвентиляторный компьютер является не ноутбуком, а именно десктопом.

При просмотре состояния SMART выявлено, что значение параметра 193, соответствующее количеству циклов позиционирования пишущей головки в зону парковки, постоянно растёт.

Так как какой-либо сервисной утилиты отключения парковок у меня не было, да и сайт www.bad-good.ru категорически не рекомендовал этого делать, пришлось, как было на нём указано, искать другой путь.

Исходя из других ресурсов интернета продвинутый пользователь решает, что частая парковка приводит к износу механики головок жесткого диска. Это верно. А далее он делает то действие, за которое ему приходится потом расплачиваться деньгами. Он отключает парковку при помощи сервисных программ производителя. Как следствие, жесткий диск неспешно сыпется меньше чем за год. Пользователь думает, что щелчки были связаны с неисправностью жесткого диска, и вот он через год и умер. Покупает следующий. И в цикле. Ищите решение этой проблемы в самой ОС, которую вы поставили; залезать во внутреннее содержимое контроллера жесткого диска противопоказано.

Не секрет, что в настоящее время "толковую" информацию найти зачастую найти тяжело. Было найдено 4 варианта решения. На системе Runtu сработал 1-й вариант.

Так как мой компьютер не использует ни ждущего, ни спящего режимов (они ), то было решено осуществить "Persistent configuration using udev rule".

Если у Вас отсутствуте пакет hdparm, то его можно найти через менеджер пакетов Synaptic. В Linux Mint он установлен изначально, а в Runtu – отсутствует.


После были выполнены запросы к состоянию электропитания винчестера (через терминал).

Sudo hdparm -B /dev/sda
/dev/sda: APM_level = 128

Sudo hdparm -S /dev/sda
-S: bad/missing standby-interval value (0..255)

Sudo hdparm -M /dev/sda
/dev/sda: acoustic = not supported

Cоздать файл 95hdparm-apm в каталоге /etc/pm/power.d с содержанием:

#!/bin/sh
hdparm -B 254 /dev/sda

Уставить на созданный файл права на исполнение:

Sudo chmod u+rwx,g+rx,o+rx /etc/pm/power.d/95hdparm-apm

После перезагрузки проверить полученный результат командой терминала:

Sudo hdparm -I /dev/sda | grep -i "Advanced power management level"

Изменить файл /etc/hdparm.conf, вписав в него следующее:

/dev/sda {
apm = 254
apm_battery = 254
}

4-й вариант. (источник не помню)

Создать в /etc/init.d скрипт под именем hdparm_park (имя дано для примера, можно указать своё):

#!/bin/bash
hdparm -B 255 /dev/sda
hdparm -S 0 /dev/sda

Сделать его исполняемым:

Sudo chmod +x /etc/init.d/hdparm_park

Добавить его к автозагрузке:

Sudo update-rc.d hdparm_park defaults 90

Что означают цифры 128, 254, 255 ? (взято с англоязычных источников)

Для параметра -B

0 ... 127 – позволяют задействовать функцию винчестера spin-down;

128 ... 254 – не позволяют функции spin-down влиять на работу винчестера;

255 – полностью деактивирует функцию Advanced Power Management.

Для параметра -S

0 соответствует "выключено";

1 ... 240 – значение, умноженное на 5, определяет интервал от 5 секунд до 20 минут;

241 ... 251 – определяющие интервалы значений 11 до 30 задают шаг в 30 минут для определения значений интервала: 30 минут... 5,5 часов;

252 – соответствует значениям таймаутов 21 минут;

253 – значение таймаута определяется вендором;

255 – интерпретируется как 21 минута + 15 секунд.

Цитата с "древней" публикации (2010 г.): "Если значение APM установлено в диапазоне от 254 - 192 то HDD будет потреблять "по максимуму". Если в диапазоне 192 - 128 то при отсутствии обращений к диску (Hitachi) в течении 2 - 6 минут, будет произведено обесточивание соленоида актуатора, головки запаркуются на рампу, обороты шпинделя останутся на прежнем уровне. Если в диапазоне 128 - 1, то при уже обесточенном соленоиде и запаркованных головках нет обращений к диску 5 - 10 минут то скорость шпинделя снизится до 5400 об/м."

В дополнение для ноутбуков найдено ещё (было указанно для Arch, публикация давняя):

" ... лучше установить tlp и в /etc/default/tlp в строчке DISK_APM_LEVEL_ON_BAT= вместо 128 128 поставить 254 254 (обязательно включив службу systemctl enable tlp, или не знаю, какая система инициализации там у вас...

Когда в последний раз писал мануал на эту тему, нужно было поставить параметр CONTROL_HD_POWERMGMT=1 в файле /etc/laptop-mode/laptop-mode.conf

Проблема была следующая: В игре (в игре Smite) наблюдались периодические лаги (примерно раз в 15 секунд), подвисание буквально на пол секунды, секунду лаги. По отзывам, такие же лаги наблюдаются у во многих играх, таких как Call of Duty, Call of Duty ww2, Вattlefield 1, Вattlefield 3, Вattlefield 4 и многих других.

Обычно советуют проверить интернет, понизить настройки графики, отключить антивирус, это конечно все может помочь, но если это не помогает и у вас ультра хороший компьютер, который явно по системным требованиям должен спокойно тащить игру, та вот решение.

Проблема состоит в следующем: на жестких дисках есть такая технология – под названием парковка головки, которая убирает считывающую головку диска в безопасную область, чтобы не создавать завихрения над диском при простое и уменьшить износ диска.

Но порой диск «простаивает» всего лишь несколько секунд, например, пока вы бежите в игре по области, которая уже прогрузилась и не требует запроса информации с жесткого диска, но как только вы попадаете в новую, не подгруженную в оперативную память зону, компьютеру требуется информация и он обращается к жесткому диску. И вот именно в этот момент, если у вас головка уже отправилась в безопасную зону, она должна вернуться оттуда, на что и уходит примерно пол секунды, из-за чего и возникает лаг.

Решение проблемы:

1. Если у Вас есть другой жесткий диск, попробуйте переставить игру на него.

Но если нет или у вас все диске компании Western Digital (WD), как это было у меня, то переходим ко второму пункту.

2. И так, у Вас Western Digital (WD) (обязательно убедитесь в этом)

— Первым делом, то, что нужно сделать – это зайти в биос и поменять режим работы диска с AHCI на IDE.
— Смотрим S.M.A.R.T. вашего жесткого диска, любой программой, умеющей это делать, например, AIDA64, Everest, Victoria и т.п. Нас интересует параметр 193 Load/Unload Cycle count, он показывает количество парковок головки. Сравниваем цифру на против этого параметра с цифрой напротив параметра 12 Power Cycle Count (количество циклов отключения питания). Если значения отличаются в десятки или сотни раз, то это наш случай!
— Нам потребуется утилита что бы сделать загрузочную флешку, такая как HP USB Disk Storage Tool и MS-DOS
— Далее Скачиваем программу WDIdle3.
— Далее: делаем загрузочную флешку DOS, распаковываем туда архив с нашей программой, перезагружаем компьютер, загружаемся с флешки, путем нажатия клавиши F8, при перезагрузке компьютера и у нас появится командная строка для работы с жесткими дисками.
— В эту строку мы вводим следующие команды.
— Первым делом команда wdidle3 /r она покажет текущее значение таймера в секундах. Т.е. через сколько времени бездействия головка паркуется. Вот там то обычно и стоит 12,8 – 15 секунда. Те 15 секунда через которые вы наблюдали лаги!
— Что бы совсем отключить парковку головки вводим команду wdidle3 /d.
— Что бы установить какое-либо значение, нам потребуется команда wdidle3 /s50, где s50 – будет число, отвечающее за колчество секунд, через которое головка будет парковаться.
Тут помните, что значения от 8 до 12,7 секунд можно устанавливать с точностью 0,1 с. Значения от 12,8 до 30 таймер ставится только на 30. Значения от 30 до 300 – с точностью по 30 с. Максимальное значение 300. Нажимаем enter.
— Проверяем, установилось ли значение wdidle3 /r
— Выходим перезагружаемся, проверяем в игре, лагов должно не быть! Ура!

PS: Бывает такое, что после данных манипуляций на компьютере появляются частые вылеты в синий экран и подобная нестабильная работа. Я вас рекомендую сначала полностью убрать парковку головки, проверить в игре, если лаги ушли – то оставить так и забыть, ничего диску не будет, но если уж вы хотите поставить какое-нибудь значение – ставьте 300, проверяйте, если вылетов нет – оставляйте и наслаждайтесь игрой!

Если же все-таки вылеты наблюдаются, экспериментируйте со значениями и подбирайте нужное.

Так же хочу заметить, что никаких криминальных и фатальных последствий в этом нет, доказано на личном опыте!

Всем добра!


На одном из компьютеров наблюдалась такая проблема: компьютер постоянно ловил секундные подвисания, особенно это было заметно в играх, при простое винчестер начинал потрескивать. Оказалось все дело в парковке головок на жестком диске , все бы ничего, но диск парковал головки при 8-ми секундном простое. Некоторые винты (наверное некоторые дешевые модели), после парковки головок долго возвращаются в рабочее состояние, что и приводит к фризам в играх. Второе на что нужно обратить внимание, производители жестких дисков утверждают, что винчестеры должны выдерживать от 300 до 600 тысяч парковок. Моему винчестеру меньше года, но по S.M.A.R.T данным параметр Load/Unload Cycle count уже перевалил за сто тысячную отметку, хотя количество циклов отключения питания диска чуть больше тысячи (Power Cycle Count ). В данной статье я не хотел бы никого призывать к совершению данной операции, а всего лишь рассмотреть как это делается. Встречались мне жесткие диски и с более миллионом парковок, которые работали без нареканий. В интернете я наткнулся на статью под названием "WDIdle3 - отключаем парковку головок на жестких дисках Western Digital ", но к сожалению рассмотренная там утилита поддерживает небольшое количество дисков Western Digital . С помощью WDIdle3 можно увеличить простой перед парковкой головок до 5 минут, или вовсе отключить. Также отключить парковку можно с помощью изменения APM (Advanced Power Management), параметр отвечающий за энергопотребление жесткого диска (1 - 254). По умолчанию, для моего диска WD этот параметр был выставлен в значение 96 , хотя у многих по умолчанию выставлено значение 128 . По некоторым утверждениям, для уменьшения числа парковок, достаточно выставить значение APM в 128. При отключении питания параметр Advanced Power Management сбрасывается на значение по умолчанию, поэтому далее в статье я рассмотрю отключение парковки головок через APM в автоматическом режиме, с помощью добавления задачи в планировщик.

Утилиты

1. Для изменения параметра APM нам понадобиться утилита HDParm . 2. Чтобы при запуске не было видно окна командной строки, мы используем утилиту hidcon .

Установка

1. Устанавливаем HDParm в директорию по умолчанию c:\Program Files (x86)\hdparm\ 2. В эту же директорию копируем hidcon.exe 3. Здесь же создаем файл hdparm.cmd , который и будет отвечать за изменение APM, следующего содержания: @ECHO OFF cd "%~dp0" hdparm -B 255 hdb exit 255 - отключает APM, можно указать нужное значение без отключения, указав от 1 до 254. hdb - указывает, что мы меняем значение у второго винчестера в системе (hda, hdb, hdc ...)

Настройка

1. Для hdparm выставляем совместимость WinXP и запуск от имени администратора. 2. Для hidcon также желательно выставить запуск от имени администратора. 3. Запускаем планировщик заданий. Нажимаем на клавиатуре Win+R и в появившемся окне набираем команду: %SystemRoot%\system32\taskschd.msc /s 4. Создаем задачу:

Здесь событие System - Power-Troubleshooter - 1 создается для отключения APM при выходе из сна. Теперь при запуске системы у нас будет отключаться Advanced Power Management, что приведет к отключению парковки головок жесткого диска .

Жесткий диск — один из самых удивительных компонентов современного компьютера. Только представьте себе, что мы все еще храним данные с помощью магнитно-механической технологии, которая существует с 50-х годов ХХ века и успела повидать ламповую электронику и грампластинки. Представьте, что мы живем в альтернативной Вселенной, где жесткий диск никогда не был изобретен и все данные записываются на Flash-память или другие твердотельные носители. Тогда что вы скажете на предложение сохранять информацию в виде намагниченных участков на вращающемся диске, где записывающая головка сможет точно позиционироваться на дорожках, расстояние между которыми сопоставимо по размеру с транзисторами, создаваемыми в интегральных схемах с помощью фотолитографии? Это невозможно, слишком сложно, ненадежно и недолговечно? Нет, это реальность, которую мы принимаем как нечто само собой разумеющееся. Пример технологии, доведенной до изначально непредсказуемого, даже абсурдного уровня.

Хотя в основе технологии HDD лежат простые принципы, для того чтобы она достигла таких высот, потребовались десятки лет разработки и научных исследований, огромное количество сложных, нетривиальных, подчас остроумных и невероятных решений, о которых немного известно за пределами круга людей, по профессии связанных с производством жестких дисков. Мы побеседовали именно с таким человеком — ему можно задать все вопросы, приходящие в голову по поводу технологий жестких дисков, которые применяются сейчас и будут внедряться в будущем. Знакомьтесь: Алекс Блеквелл (Alex Blackwell), главный инженер компании Western Digital в регионе EMEA.

Блеквелл часто общается с компьютерной прессой, но это явно не тот случай, к которому подошло бы казенное «по долгу службы часто приходится общаться». Чувствуется, что ему действительно нравится рассказывать людям о технологиях. Алекс говорит так увлеченно и ярко, что двухчасовое интервью с ним пролетело на одном дыхании. Это, в общем-то, и было мало похоже на интервью. У Алекса не пришлось ничего «выспрашивать», и на один вопрос он выдавал гораздо больше интереснейшей информации, чем мы изначально рассчитывали получить. Получилась фактически полноформатная лекция об интересных и неочевидных фактах, касающихся жестких дисков.

Составляя список вопросов, мы постарались сократить банальности из разряда «как у WD дела сейчас и каковы планы на будущее?» и узнать больше о жестких дисках в целом, не боясь в чем-то показаться наивными и невежественными. Алекс с удовольствием позволяет собеседнику быть жадным до знаний «почемучкой».

А еще у Блэквелла очень яркая речь, насыщенная метафорами и юмором. Попытаемся передать это в тексте, сделав его максимально близким к «непричесанной» стенограмме. Тем не менее, поскольку разговор постоянно крутился вокруг одних и тех же вопросов, мы именно так его и скомпонуем — в виде конспекта нескольких главных тем. Никакого единого сюжета, просто сборник увлекательных историй про жесткие диски. Вся речь идет от лица Алекса Блеквелла, вопросы и комментарии автора — курсивом.

⇡ О парковке головок и встроенном электрогенераторе

3DNews : Мы не так давно узнали, что жесткий диск использует электрический генератор, чтобы можно было завершить запись сектора в случае аварийного отключения. Можно рассказать об этом поподробнее?

Алекс Блеквелл: Когда внезапно пропадает электропитание, первое и самое важное для безопасности привода — запарковать головки. Потому что если они приземлятся на магнитный носитель, то они просто прилипнут, и больше не смогут подняться (в работе головка фактически летит над поверхностью за счет потока воздуха. — прим. автора ) . Это конец. Настолько гладкие у них поверхности. Представьте себе два абсолютно гладких листа стекла, прижатые друг к другу. Сколько силы нужно, чтобы разорвать их! Если вы включите привод после того как головки прилипли к диску, то вращение шпинделя просто оторвет кончик актуатора. Поэтому для парковки мы поднимаем головки и относим их на отдельную пластиковую площадку. Вернее, опускаем актуатор, а сами головки на кончике висят в воздухе.

Кончик актуатора «упал» на пластину (фото c Wikimedia Commons)

На парковку головок при обрыве питания у нас всегда есть немного свободного времени. Эта операция осуществляется с помощью электрического генератора. Но генератора как отдельного устройства в жестком диске нет. Двигатель просто используется в «реверсе», что можно сделать с любым электрическим мотором.

Так обстоят дела в течение последних 15-20 лет. Диски более старых типов парковали головки прямо на поверхность диска, у внутреннего края. Там был магнитный замок, который удерживал актуатор на месте. Если вы помните, то, выключая такой старый привод, вы слышали щелчок. Это актуатор приближался к магниту и защелкивался там. Для Western Digital производство таких дисков закончилось в 2005-2006-м, может, даже в 2007 году.

Парковать головки прямо на диске можно было потому, что изначально поверхность была не столь гладкой и головки были крупнее. Вообще, тогда все было проще. Потом поверхность потребовалось сделать очень гладкой, чтобы головка летала очень близко (сейчас зазор между головкой и поверхностью диска составляет единицы нанометров. — прим. автора ) . И однажды она стала слишком гладкой, чтобы можно было взлететь с нее после парковки. Тогда мы начали использовать лазер, чтобы создать текстуру на поверхности диска в парковочной зоне. Теперь, с 2007 года, парковочная зона находится вне поверхности диска, на пластиковой площадке. То есть принцип парковки головок пережил всего три этапа развития, но, несмотря на это, в данной области задействовано очень много тонких технологий.

Однако вернемся к ситуации обрыва питания. Помимо того, чтобы запарковать головки, вторая задача — спасти настолько много пользовательских данных, насколько возможно. Нужно передать на носитель фрагмент информации, который записывается в данный момент, завершить запись текущего сектора. Для этого мы просто используем остаточное вращение носителя.

⇡ Некоторые впечатляющие цифры и двухступенчатый актуатор

Первый жесткий диск появился в 1956 году. Вспомните другие технологии из 1950-х. Например, радиолампы. С тех пор у нас появились транзисторы, затем первые интегральные схемы, а затем — LSI (Large Scale Integration, микросхемы с сотнями тысяч транзисторов) . Или возьмем аудиозапись. Большую часть времени мы использовали пластинки со скоростью вращения 78 об/мин. Сначала с пластиковыми иглами, потом с алмазными, потом появилась магнитная лента, CD, MP3. Некоторые технологии просто прыгнули вперед, но дисковые приводы все еще работают так же, как встарь. Есть вращающийся диск и актуатор, движущийся вдоль него, магнитная поверхность с индуктивным принципом записи и чтения. Разве что автомобили остались такими же, как в то время.

Но представьте себе первый жесткий диск от IBM. Допустим, размер одного бита на этом диске 50-х годов сопоставим со стадионом «Спартак». Насколько же тогда велик бит на современном диске? Размером с этот стол? Размером с эту комнату? Размером с мой большой палец? Правильно, именно палец! Площади, занимаемые одним битом сейчас и тогда, соотносятся в масштабе 10 8 . То есть 10 4 в каждом направлении.

IBM 350 (1956 г.) — самый первый жесткий диск. Предназначался для компьютера IBM 305 RAMAC (фото с Wikimedia Commons)

Геометрия жесткого диска постоянно сжимается. Сейчас дорожки на носителе находятся на расстоянии 50-60 нм друг от друга. А теперь вспомните микропроцессоры Intel, которые для производства по норме 28 нм используют фотолитографию, фабрики с гигантским оборудованием. А у нас в то же время есть вращающийся диск, и мы можем позиционировать головку в центре одной из дорожек, которые разделяют всего 60 нм, с точностью около 10 нм. Это настоящий хай-тек.

Вы знаете, что такое двухступенчатый актуатор (Dual Stage Actuator) ? Представьте, что моя рука — это акутатор с головками на конце. Вот поворотная точка в плечевом суставе. И если вам требуется улучшить позиционирование руки, то можно обратить внимание на сустав пальца. На двухступенчатом актуаторе есть своего рода дополнительный маленький актуатор, который может перемещаться всего на несколько дорожек влево и вправо. За счет этого мы можем повысить точность позиционирования. Мы используем эту технологию уже около двух лет в корпоративных продуктах (серия RE3), а в 2012 году внедрили в некоторых потребительских моделях. В терабайтном диске серии Green, нескольких Blue, всей линейке Red, а теперь и в Black.

Схема двухступенчатого актуатора (из патента United States Patent 6624983)

⇡ WD Black и терабайтные пластины

3DNews : Расскажите, почему диски серии WD Black показывают такую впечатляющую производительность, в особенности — в тестах произвольного доступа?

Алекс Блеквелл: Одна из основ высокой производительности — скорость вращения шпинделя. Вторая основа — быстрый актуатор, за счет которого уменьшается время поиска дорожки. В дисках серии WD Black и RE в двигателе актуатора используются два больших магнита. Более сильный магнит позволяет быстрее двигать головки. В других сериях, Blue и Green, устанавливают более компактный одинарный магнит, поэтому Black опережает Blue по скорости произвольного доступа, хотя последние тоже работают на 7200 об/мин.

3DNews : А когда же появятся диски WD Black с пластинами объемом 1 Тбайт?

Алекс Блеквелл: Это вопрос приоритетов. Нет технологической причины, по которой мы не можем этого сделать. Терабайтные пластины уже применяются в «зеленой» серии при объеме 1-3 Тбайт, в «синей». Понимаете, когда ты проектируешь жесткий диск и хочешь продать его с прибылью, то нужно сочетать много параметров: производительность, объем, выход годных компонентов при производстве и множество других. Важно сочетание факторов, а не просто обладание определенной технологией. Я полагаю, что для WD Black терабайтные пластины просто еще не пришли в зону оптимального сочетания характеристик.

⇡ Как устроены головки

3DNews : Что собой представляют головки типа GPP / GMR (Perpendicular to Plane / Giant Magnetoresistance), которые сегодня используются в жестких дисках? Как они работают?

Алекс Блеквелл: Оригинальный жесткий диск IBM и все последующие диски вплоть до 1996-1997 годов имели единые головки чтения/записи. Такая головка представляет собой разорванное кольцо с проволокой, накрученной сверху. Когда на проволоку подается ток, возникает магнитное поле, которое «вытекает» через разрыв в кольце. Если поднести разрыв к чему-то, что может быть намагничено, оно намагничивается. Что и происходит с поверхностью пластины в жестком диске: возникают участки, имеющие магнитные полюса — северный и южный. В то же время, если не подавать на головку напряжение, а просто провести вдоль намагниченного участка, в ней возникает ток.


Актуатор и его кончик под микроскопом (за фото спасибо Andrew Hazelden, www.andrewhazelden.com)

Со временем стало очевидно, что единое устройство представляет собой компромисс. Что хорошо для записи, может быть неоптимальным для чтения. Тогда нашла применение идея магниторезистивности. В качестве считывающей головки стали использовать резистор, который меняет сопротивление в присутствии магнитного поля. А в качестве записывающей головки — отдельную индуктивную часть. И больше никакого компромисса. Позже появилось второе поколение этой технологии — GMR (Giant Magnetoresistance), где Giant указывает на величину напряжения, которое позволяет развить резистивный элемент. Он просто стал более чувствительным. А на будущее после GMR у нас есть вот какая штука: TuMR — Tunneling Magnetoresistance, которая еще больше повысит эффективность головки.

Теперь о записи. Катушка с разрывом в середине, о которой я говорил изначально, используется для так называемой продольной магнитной записи. Намагниченные участки на пластине образуются в продольной ориентации. Подобно тому, как машины паркуются на улице.

Продольная и перпендикулярная запись

Но теперь мы берем и устанавливаем эти магнитики вертикально. Получается перпендикулярная запись. Не зная технологии, трудно себе представить, как это делается. На самом деле, нужно добавить к магнитной пластине еще один слой, который как бы отражает один из полюсов катушки и создает слабый магнитный эффект, распределенный по большой площади. Вот как работает перпендикулярная запись. Для машин также было бы лучше, чтобы они парковались вертикально, особенно в Москве. Главное — не забыть убрать кофе из подстаканника.

В частности о возможности использования компактных дисков 2.5 дюйма в настольных системах, где практически всегда применяются «взрослые» диски типоразмера 3.5 дюйма.

В моей предыдущей системы долгие годы работали 2 винчестера Western Digital, если быть точнее, WD Caviar Blue (WD5000AAKS) и WD Caviar Green (WD5000AADS) – оба по 500 ГБ. Для системы я использовал OCZ Agility 3 на 60 ГБ, в то время как HDD использовались для хранения файлов.

Основная проблема больших 3.5-дюймовых дисков – уровень шума. Пожалуй, это одна из немногих проблем, с которой бороться сложнее всего. Всё дело в том, что диски создают низкочастотную вибрацию, которая передается самому корпусу. И это при том, что на старшей модели WD Blue был активен AAM (Automatic Acoustic Management).

Чуть ниже вы можете увидеть уровень производительности Caviar Blue и Caviar Green соответственно, измеренный при помощи CrystalDiskMark 5.2.1.



Как видим, максимальная скорость чтения и записи не превышает 100 Мбайт/сек. По меркам тех лет, когда были выпущены оба диска (7-8 лет назад), показатель довольно хороший.

На первый взгляд может даже показаться что Green быстрее, нежели Blue, но пускай вас не обманывает результат тестов, давайте взглянем на результаты, полученные в Victoria и HD Tune.








Как видно, Caviar Blue обеспечивает более быстрый доступ и производительность IOPS. Ну да ладно, сейчас не об этом.

При сборке новой системы было решено отказаться от двух стареньких 3.5-дюймовых дисков по 500 ГБ в пользу одного на 1 ТБ форм-фактора 2.5 дюймов.

После нескольких дней поисков оптимального варианта, я остановился на диске Hitachi (HGST) Travelstar 7K1000 1TB 7200rpm 32МB. Только вот не задача, диск предлагается в двух версия: HTS721010A9E630_0J22423 и HTE721010A9E630_0J30573.

На момент покупки за HTS721010A9E630_0J22423 продавцы просили 1599 грн (60.84$), за HTE721010A9E630_0J30573 – 1915 грн (72.87$).

По факту оба диска абсолютно идентичны в плане конструктивного исполнения, различия кроются в настройках самого диска, а именно в настройках. Первая модель относится к «Standard Models», вторая – к «Enhanced Availability Models», т.е. с улучшенным доступом.

Просто взгляните на сравнительную таблицу.




Для стандартной модели «Power on Hours (POH) Per Month» не указан, в то время как для улучшенной указано 730 часов, что обозначает возможность круглосуточной работы. Для тех, у кого есть вопросы: 365 дней в году по 24 часа дают 8760 часов. При делении на 12 месяцев и получается в среднем 730 часов в месяц. Собственно чуть нижу для улучшенной модели в параметре «Availability (hrs/day x days/wk)» так и указано – 24x7 (24 часа в сутки, 7 дней в неделю).

Стандартная модель может работать в режиме энергосбережения (Low Power), при котором потребляется в среднем всего 0.8 Вт (Idle) при простое и 1 Вт (Active Idle) при активности. Для старшей модели энергопотребление постоянное составляет 1.8 Вт.

За все эти отличия отвечает всего один параметр – APM (Advanced Power Management). Не стоит путать APM с AAM (Automatic Acoustic Management), т.к. последний по факту управляет акустическим шумом, путем изменения скорости перемещения головки. Пользователь может выбирать между тишиной и производительностью. Обратите внимание, AAM не влияет на скорость вращения диска, посему линейная скорость чтении/записи остается практически неизменной, меняется только время случайного доступа, хотя на фоне таких оптимизаций как NCQ разница по скорости не так заметна, как изменение уровня шума.



В случае с APM (Advanced Power Management), диск управляет энергопотреблением путем остановки двигателя и парковки головок (режим Standby). Во-первых, остановка двигателя означает, что при обращении к диску будет задержка, связанная с необходимостью раскрутки дисков. Во-вторых, диск не может производить парковку бесконечно, а сам процесс приводит к постепенному износу диска. Некоторые производители заявляют для своих дисков 300 тыс. парковок, некоторые 600 тыс., некоторые еще больше. Диски большинства производителей паркуются довольно редко (несколько раз в час), другие же как Travelstar 7K1000 за полтора года эксплуатации могут «запарковаться» более 500 тыс. раз (менее 1 тыс. в день / примерно 500-800 в зависимости от условий и времени работы). Как результат, по данным S.M.A.R.T. такой диск быстро изменит статус на «Bad».

Так вот, в стандартной версии диска, APM имеет значение 128, в улучшенной – 254 (отключено). У вас закономерно должен возникнуть вопрос, а как вообще парковка головок экономит электроэнергию и ресурс батареи? Дело в том, что противоположный конец головки оснащен катушкой. При подаче «правильного» питания на катушку, она генерирует электромагнитное поле, что позволяет ей перемещаться между двух мощных постоянных магнитов (перемещая при этом противоположный конец).

Что интересно, значение APM можно изменить самостоятельно. При использовании в ноутбуках полностью отключать парковку не рекомендуется, т.к. ноутбук это переносной компьютер, а одна из возможностей APM – ­парковка головок, которая в свою очередь защищает поверхность диска от повреждений при перемещении ноутбука (тряска, сильные вибрации, удары, ускорение). В случае со стационарным ПК парковку во время работы можно отключать, или же установить значение 250-253. Не стоит бояться, что диск перестанет парковать вообще, при отключении как и ранее, будет выполняться парковка головок в безопасную зону.

Отключаем парковку головок при простое

Лично я, как и тысячи других людей, решил продлить срок службы диска и не переплачивать 12 у.е. за версию с отключенным APM.

С завода HTS721010A9E630_0J22423 идет с APM=128. Диапазон значений APM колеблется от 1 до 254. При установке значения ниже 128, диску будет разрешено останавливать шпиндель (двигатель). Для некоторых дисков отключение производится при значении APM=0 (0x00), но в случае с Travelstar 7K1000 такой возможности нет.

Итак, что нам потребуется?

    флеш-накопитель (USB);

  • Hitachi Feature Tools
  • HP USB Disk Storage Format Tool
  • MSDOS

Не спешите скачивать Hitachi Feature Tools с официального сайта HGST, там представлена старая версия FT 2.15 без поддержки новых дисков.

Вместо этого необходимо скачивать версию Hitachi Feature Tools v2.17b2, которая поддерживает новые диски Travelstar 5K500.B, 7K500, 5K750, 7K750, 5K1000, Z5K320, Z7K320, Z5K500, Z7K500 и наш 7K1000.

(cкачиваний: 1058)


Первым делом устанавливаем HP USB Disk Storage Format Tool из папки 1_HP_USB_Disk_Storage_Format_Tool . Для Windows 7 и выше, запускать утилиту HPUSBFW необходимо с правами администратора.

В меню утилиты выбираем свой флеш-накопитель (выпадающее меню Device), в качестве файловой системы (File system) необходимо указать FAT32, метка диска (Volume label) может быть любой, это не принципиально.

Далее для быстрого форматирования отмечаем опцию «Quick Format », чуть ниже также активируем «Create a DOS startup disk » (создать загрузочный диск с DOS) и переключаем радиобокс на пункт «using DOS system files located at », для которого указываем путь к папке 2_MSDOS из архива. Нажимаем Start, после чего необходимо подтвердить форматирования диска (все имеющиеся на диске данные будут уничтожены).




Дожидаемся завершения процедуры, после чего в корень накопителя копируем все файлы из папки 3_FT217b2 . Если у вас скрыты системные файлы, накопитель будет отображаться как пустой, но при копировании файлов у вас появится запрос о замене файлов (заменяем файлы).


Процесс создания загрузочной флешки завершен. Теперь необходимо с неё загрузится, на каждой системе делается это по-разному. На некоторых системах, для загрузки с диска необходимо менять параметры в BIOS (часто F2, Delete, F12), на других есть специальное меню (часто F12).

При запуске Hitachi Feature Tools потребуется несколько раз нажать любую клавишу. Система вас предупредит о том, что данная версия HFT является неофициальной и основана на официальной версии Hitachi Feature Tools 2.16 M2, выпущенной в 2011-м году. Также вы получите предупреждение о том, что FT217b2 предназначена исключительно для изменения параметра APM в новых дисках Travelstar (5K500.B, 7K500, 5K750, 7K750, 5K1000, Z5K320, Z7K320, Z5K500, Z7K500), не предназначена для изменения других параметров или изменения параметров в других моделях, которых нет в списке.

Как всегда, всё предоставляется «как есть» (as is), т.е. вы используете программу на свой страх и риск, ни разработчики, ни я не несем ответственности за возможные последствия, в том числе потерю данных и/или выход из строя жесткого диска. Перед изменением параметров обязательно копируйте данные (делайте бэкап).


После выбора диска из спика, необходимо зайти в верхнее меню «Features» и выбрать «Change Advanced Power Mode», либо нажать комбинацию Alt + P. В появившемся меню настраиваете параметр APM согласно своим предпочтениям.


Лично я установил значение 254. Изменения вносятся в прошивку диска, поэтому переустановка ОС или использование на другой аппаратной платформе никаким образом не влияет на установленный параметр. Это значит, что параметр для диска необходимо менять всего один раз, например, сразу после покупки. Если диск не определяется программой, значит ваш ПК на базе несовместимой системной логики Intel ICH9M, либо необходимо переключить SATA из AHCI в режим Native IDE. Диски, установленные во внешний карман определяться также не будут.


Ну и напоследок, новый маленький диск по скорости абсолютно не уступает предыдущим полноразмерным дискам. Удачных вам апгрейдов!

P.S. Дополнительно в настройках планов электропитания Windows можно запретить отключение диска («отключать диск при простое» – 0/нет).

Похожие статьи