Устройство конденсатора: что делает компонент и зачем он нужен? Принцип работы конденсатора.

17.07.2019

Если заглянуть внутрь корпуса любого электроприбора, можно увидеть множество различных компонентов, применяемых в современной схемотехнике. Разобраться, как работают все эти соединенные в единую систему резисторы, транзисторы, диоды и микросхемы, довольно сложно. Однако для того чтобы понять, зачем нужен конденсатор в электрических цепях, достаточно знаний школьного курса физики.

Устройство конденсатора и его свойства

Конденсатор состоит из двух или более электродов – обкладок, между которыми помещен слой диэлектрика. Такая конструкция обладает способностью накапливать электрический заряд при подключении к источнику напряжения. В качестве диэлектрика могут использоваться воздух или твердые вещества: бумага, слюда, керамика, оксидные пленки.

Основная характеристика конденсатора – постоянная или переменная электрическая емкость, измеряемая в фарадах. Она зависит от площади обкладок, зазора между ними и вида диэлектрика. Емкость конденсатора определяет два важнейших его свойства: способность накапливать энергию и зависимость проводимости от частоты пропускаемого сигнала, благодаря которым этот компонент получил широкое применение в электрических цепях.

Накопление энергии

Если подключить плоский конденсатор к источнику постоянного напряжения, на одном из его электродов будут постепенно собираться отрицательные заряды, а на другом – положительные. Данный процесс, называемый зарядкой, показан на рисунке. Его длительность зависит от значений емкости и активного сопротивления элементов цепи.

Наличие диэлектрика между обкладками препятствует протеканию заряженных частиц внутри устройства. Но в самой цепи в это время электрический ток будет существовать до тех пор, пока напряжения на конденсаторе и источнике не станут равны. Теперь, если отключить элемент питания от емкости, она сама будет являться своеобразной батарейкой, способной отдавать энергию в случае подсоединения нагрузки.

Зависимость сопротивления от частоты тока

Подключенный к цепи переменного тока конденсатор будет периодически перезаряжаться в соответствии с изменением полярности питающего напряжения. Таким образом, рассматриваемый электронный компонент, наряду с резисторами и катушками индуктивности, создает сопротивление Rс=1/(2πfC), где f – частота, С – емкость.

Как видно из представленной зависимости, конденсатор обладает высокой проводимостью по отношению к высокочастотным сигналам и слабо проводит низкочастотные. Сопротивление емкостного элемента в цепи постоянного тока будет бесконечно большим, что эквивалентно ее разрыву.

Изучив эти свойства, можно рассмотреть, зачем нужен конденсатор и где он используется.

Где применяются конденсаторы?

  • Фильтры – устройства в радиоэлектронных, энергетических, акустических и других системах, предназначенные для пропускания сигналов в определенных диапазонах частот. Например, в обычном зарядном устройстве для мобильного телефона применяются конденсаторы для сглаживания напряжения за счет подавления высокочастотных составляющих.
  • Колебательные контуры электронной аппаратуры. Их работа основана на том, что при включении конденсаторов в совокупности с катушкой индуктивности в цепи возникают периодические напряжения и токи.
  • Формирователи импульсов, таймеры, аналоговые вычислительные устройства. В работе этих систем используется зависимость времени заряда конденсатора от величины емкости.
  • Выпрямители с умножением напряжения, применяемые в том числе в рентгенотехнических установках, лазерах, ускорителях заряженных частиц. Здесь важнейшую роль играет свойство емкостного компонента накапливать энергию, сохранять и отдавать ее.

Конечно, это только самые распространенные устройства, где используются конденсаторы. Без них не обойдется ни одна сложная бытовая, автомобильная, промышленная, телекоммуникационная, силовая электронная аппаратура.

Зачем нужен конденсатор для автоакустики, знают все те, кто так или иначе сталкивался с автозвуком. Дело в том, что когда устанавливается аудиосистема своими руками, приходится изучать множество материалов.
И в рекомендациях указывается, что вместе с усилителем обязательно должен ставиться конденсатор или накопитель. Нужны ли конденсаторы для акустики в авто или все это мифы.
Если нужны, то зачем и какова их роль во всей системе. Вот о чем пойдет речь в нашей статье.

Общая информация

Итак, зачем же нужен конденсатор? Как известно, цена на него не маленькая и не все автомобилисты, даже любители хорошего звука, желают лишний раз урезать свой бюджет.
С другой стороны, каждый меломан рано или поздно обзаводится мощной или доводит ее до совершенства. Это очень хорошо, но чем мощнее система, тем больше энергии ей подавай.

Примечание. АКБ не способна отдавать такую энергию, в результате чего происходит просадка (ниже подробно описывается, что это значит). Выражается просадка тем, что фары автомобиля начинают «моргать», падает мощность усилителя, бас идущий от сабвуфера, прежде четкий, становится «размытым».
В отдельных и особо тяжелых случаях резкое падение напряжения усилителя приводит к клиппингу, что грозит повреждением динамиков.

Правда или нет

По сей день и в интернете, на различных форумах, в блогах ведутся горячие споры, относительно надобности или бесполезности такого накопителя, как конденсатор. Сами споры, к огромному сожалению любителей автозвука, к истине никакой не приводят.
Они полностью бесполезны, ввиду того, что оппоненты даже не имеют начального школьного представления, касающиеся физики.

Примечание. Самая большая глупость, которую можно вычитать из форумов, гласит, что надо устанавливать конденсатор из расчета только фарадов на киловатт. Такие рекомендации в корне не верны, так как не поймешь, откуда они взяты.

Итак, чтобы в некоторой степени раскрыть завесу, давайте вернемся к урокам по физике. По мере того, как будут обновляться в нашей памяти ценные знания, все мифы исчезнут, как утренний дымок.

Различия конденсатора и АКБ

Важно знать:

  • Конденсатор для басовика, это тот же потребитель питания, который не способен сам вырабатывать электроэнергию. Но он способен ее накапливать, а затем потреблять на собственные утечки, но не утечки АКБ;
  • Задача конденсатора накапливать энергию, а затем отдавать ее потребителю. Сам накопитель обладает крайне низким внутренним сопротивлением и по этой причине «расстается» с энергией очень быстро (кстати, и накапливает ее тоже не медленно).

Примечание. Отличие конденсатора от аккумулятора в том, что пик отдачи энергии у конденсатора приходится только на первый миг, а затем происходит резкий упадок заряда. Тем самым, падает и скорость отдачи вместе с зарядом.

Различия конденсатора и ионистора

Ионисторы – это то, что возят у себя в багажнике большая часть меломанов.
Отличается от конденсатора следующими параметрами:

  • Огромными потерями;
  • Большим сопротивление;
  • Отдает заряд гораздо медленнее;
  • Стоит в несколько раз дешевле, чем конденсатор той же емкости.

Оптимальное время работы ионистора равно: 1 сек/83 кул.

Проверка ионистора

  • Цепляем ионистор в акустическую систему с просадками питания;
  • Заводим и наблюдаем, что напряжение на клеммах усиливается. Пока все в порядке;
  • Увеличиваем громкость и замечаем, что напряжение садится с 13 до 10 вольт.

Примечание. Все это означает, что при первом ударе саба заряд упадет и ионистор превратится в лишний компонент питания, поскольку полезным и активным он бывает лишь, когда его заряд больше напряжения в сети.

Такая ситуация среди любителей автозвука называется просадкой, но она может быть значительно хуже, если используются в питании тонкие некачественные провода и дешевый обмедненный алюминий. В этом случае к обычной просадке добавляется еще и просадка кабеля.

Примечание. Надо знать, чем опасна просадка кабеля. Дело в том, что при резком возрастании потребления происходит реактивное сопротивление. Чем больше и быстрее пользователь попытается взять с кабеля энергию, тем тот (кабель) сильнее этому будет препятствовать (если он тонкий и длинный).

Проблема дешевого и некачественного кабеля отразится и на ионисторе, который разрядившись, уже не сможет более получить энергию.

Установка конденсатора

При установке конденсатора рекомендуется подключать его параллельно питанию усилителя(см.). Ставить его надо, как можно ближе к усилителю мощности, по крайней мере, не дальше 60 см.
Если на место ионистора поставить конденсатор, то результат будет намного эффективнее.
Делается все так:

  • Генератор автомобиля ремонтируется или ставится новый;
  • От него прокладывается кабель на массу и плюс;
  • Ставится новая АКБ;
  • Все клеммы меняются или тщательно зачищаются;
  • Прокладывается силовой медный кабель хорошего качества с достаточным сечением;
  • Подключаем усилитель, не забываем предохранитель.

Совет. Пока не проверим все клеммы и не удостоверимся, что есть 14 вольт, конденсатор не соединяем.

  • После того, как все будет проверено, можно подключать и конденсатор. Замеры на клеммах покажут те же результаты, но удивляться не стоит. Если цепь «живая» и питания хватает, то конденсатору нечего включаться и он как бы ждет своего часа.

Примечание. Еще одним заблуждением является тот факт, что якобы конденсатор нуждается в системах, где необходима большая громкость или на соревнованиях эс пи эль. В обычных случаях, конденсатор удачно заменит ионистор.

Доказать необходимость конденсатора и в обычных автомобильных акустических системах можно, исходя из нижеприведенного:

  • Замер конденсатора может долго длиться, а от этого «проснется» даже самый кислотный аккумулятор и тем самым, сумеет отдать весь свой потенциал;
  • Среди так называемого эс пи элевого братства более принято использование гелеевых батарей, способных «стрелять» сотнями ампер с поразительной скоростью. Как бы ни был конденсатор восхваляем, но при такой скорости он будет «чувствовать» себя явно не у дел;
  • Опять же, касательно эс пи эль, конденсатор не к месту, так как является потребителем энергии, что для эс пи эль явное зло.

Одним словом, в эс пи эль уж точно никакой конденсатор или иной накопитель не используется.

Лучшие конденсаторы

На сегодняшний день, конденсаторов, как и любой другой продукции автозвука, на рынке очень много. Некоторые производители усилителей, даже заранее предусматривают клеммы, предназначенные для подключения конденсатора.

Примечание. К таким усилителям можно отнести Аудисон Весис HV Venti, который даже признан лучшим акустическим усилителем прошлого года.

Focal

Другой известный производитель усилителей и высококачественной аудиотехники, но уже из Франции, Фокал, в своих моделях использует иное решение: для конденсаторов здесь предусматривается место после блока питания усилителя. Именно здесь, как утверждают эксперты, эффективность использования дополнительных накопителей во много раз выше.

  • Перевод

Если вы регулярно занимаетесь созданием электрических схем, вы наверняка использовали конденсаторы. Это стандартный компонент схем, такой же, как сопротивление, который вы просто берёте с полки без раздумий. Мы используем конденсаторы для сглаживания пульсаций напряжения/тока, для согласования нагрузок, в качестве источника энергии для маломощных устройств, и других применений.

Но конденсатор – это не просто пузырёк с двумя проводочками и парой параметров – рабочее напряжение и ёмкость. Существует огромный массив технологий и материалов с разными свойствами, применяемых для создания конденсаторов. И хотя в большинстве случаев для любой задачи сгодится практически любой конденсатор подходящей ёмкости, хорошее понимание работы этих устройств может помочь вам выбрать не просто нечто подходящее, а подходящее наилучшим образом. Если у вас когда-нибудь была проблема с температурной стабильностью или задача поиска источника дополнительных шумов – вы оцените информацию из этой статьи.


Начнём с простого

Лучше начать с простого и описать основные принципы работы конденсаторов, прежде чем переходить к настоящим устройствам. Идеальный конденсатор состоит из двух проводящих пластинок, разделённых диэлектриком. Заряд собирается на пластинах, но не может перетекать между ними – диэлектрик обладает изолирующими свойствами. Так конденсатор накапливает заряд.

Ёмкость измеряется в фарадах: конденсатор в один фарад выдаёт напряжение в один вольт, если в нём находится заряд в один кулон. Как и у многих других единиц системы СИ, у неё непрактичный размер, поэтому, если не брать в расчёт суперконденсаторы, о которых мы здесь говорить не будем, вы скорее всего встретитесь с микро-, нано- и пикофарадами. Ёмкость любого конденсатора можно вывести из его размеров и свойств диэлектрика – если интересно, формулу для этого можно посмотреть в Википедии. Запоминать её не нужно, если только вы не готовитесь к экзамену – но в ней содержится один полезный факт. Ёмкость пропорциональна диэлектрической проницаемости ε r использованного диэлектрика, что в результате привело к появлению в продаже различных конденсаторов, использующих разные диэлектрические материалы для достижения больших ёмкостей или улучшения характеристик напряжения.

Алюминиевые электролитические


Алюминиевые электролитические конденсаторы используют анодно-оксидированный слой на алюминиевом листе в качестве одной пластины-диэлектрика, и электролит из электрохимической ячейки в качестве другой пластины. Наличие электрохимической ячейки делает их полярными, то есть напряжение постоянного тока должно прикладываться в одном направлении, и анодированная пластина должна быть анодом, или плюсом.

На практике их пластины выполнены в виде сэндвича из алюминиевой фольги, завёрнутой в цилиндр и расположенной в алюминиевой банке. Рабочее напряжение зависит от глубины анодированного слоя.

У электролитических конденсаторов наибольшая среди распространённых ёмкость, от 0,1 до тысяч мкФ. Из-за плотной упаковки электрохимической ячейки у них наблюдается большая эквивалентная последовательная индуктивность (equivalent series inductance, ESI, или эффективная индуктивность), из-за чего их нельзя использовать на высоких частотах. Обычно они используются для сглаживания питания и развязывания, а также связывания на аудиочастотах.

Танталовые электролитические



Танталовый конденсатор поверхностного размещения

Танталовые электролитические конденсаторы изготавливаются в виде спечённого танталового анода с большой площадью поверхности, на которой выращивается толстый слой оксида, а затем в качестве катода размещается электролит из диоксида марганца. Комбинация большой площади поверхности и диэлектрических свойств оксида тантала приводит к высокой ёмкости в пересчёте на объём. В результате такие конденсаторы выходят гораздо меньше алюминиевых конденсаторов сравнимой ёмкости. Как и у последних, у танталовых конденсаторов есть полярность, поэтому постоянный ток должен идти в строго одном направлении.

Их доступная ёмкостью варьируется от 0,1 до нескольких сотен мкФ. У них гораздо меньше сопротивление утечки и эквивалентное последовательное сопротивление (ESR), в связи с чем они используются в тестировании, измерительных приборах и высококачественных аудиоустройствах – там, где эти свойства полезны.

В случае танталовых конденсаторов необходимо особенно следить за состоянием отказа, бывает, что они загораются. Аморфный оксид тантала – хороший диэлектрик, а в кристаллической форме он становится хорошим проводником. Неправильное использование танталового конденсатора – например, подача слишком большого пускового тока может привести к переходу диэлектрика в другую форму, что увеличит проходящий через него ток. Правда, репутация, связанная с возгораниями, появилась у более ранних поколений танталовых конденсаторов, и улучшенные методы производства привели к созданию более надёжной продукции.

Полимерные плёнки

Целое семейство конденсаторов использует полимерные плёнки в качестве диэлектриков, а плёнка либо находится между витыми или перемежающимися слоями металлической фольги, либо имеет металлизированный слой на поверхности. Их рабочее напряжение может доходить до 1000 В, но высокими ёмкостями они не обладают – это обычно от 100 пФ до единиц мкФ. У каждого вида плёнки есть свои плюсы и минусы, но в целом всё семейство отличается более низкими ёмкостью и индуктивностью, чем у электролитических. Посему они используются в высокочастотных устройствах и для развязывания в электрически шумных системах, а также в системах общего назначения.

Полипропиленовые конденсаторы используются в схемах, требующих хорошей тепловой и частотной стабильности. Также они используются в системах питания, для подавления ЭМП, в системах, использующих переменные токи высокого напряжения.

Полиэстеровые конденсаторы, хотя и не обладают такими температурными и частотными характеристиками, получаются дешёвыми и выдерживают большие температуры при пайке для поверхностного монтажа. В связи с этим они используются в схемах, предназначенных для использования в некритичных приложениях.

Полиэтилен-нафталатовые конденсаторы. Не обладают стабильными температурными и частотными характеристиками, но могут выдерживать гораздо большие температуры и напряжения по сравнению с полиэстеровыми.

Полиэтилен-сульфидовые конденсаторы обладают температурными и частотными характеристиками полипропиленовых, и в дополнение выдерживают высокие температуры.

В старом оборудовании можно наткнуться на поликарбонатные и полистиреновые конденсаторы, но сейчас они уже не используются.

Керамика


История керамических конденсаторов довольно длинная – они использовались с первых десятилетий прошлого века и по сей день. Ранние конденсаторы представляли собою один слой керамики, металлизированной с обеих сторон. Более поздние бывают и многослойными, где пластины с металлизацией и керамика перемежаются. В зависимости от диэлектрика их ёмкости варьируются от 1 пФ до десятков мкФ, а напряжения достигают киловольт. Во всех отраслях электроники, где требуется малая ёмкость, можно встретить как однослойные керамические диски, так и многослойные пакетные конденсаторы поверхностного монтажа.

Проще всего классифицировать керамические конденсаторы по диэлектрикам, поскольку именно они придают конденсатором все свойства. Диэлектрики классифицируют по трёхбуквенным кодам, где зашифрована их рабочая температура и стабильность.

C0G лучшая стабильность в ёмкости по отношению к температуре, частоте и напряжению. Используются в высокочастотных схемах и других контурах высокого быстродействия.

X7R не обладают такими хорошими характеристиками по температуре и напряжению, посему используются в менее критичных случаях. Обычно это развязывание и различные универсальные приложения.

Y5V обладают гораздо большей ёмкостью, но характеристики температуры и напряжения у них ещё ниже. Также используются для развязывания и в различных универсальных приложениях.

Поскольку керамика часто обладает и пьезоэлектрическими свойствами, некоторые керамические конденсаторы демонстрируют и микрофонный эффект. Если вы работали с высокими напряжениями и частотами в аудиодиапазоне, например, в случае ламповых усилителей или электростатики, вы могли услышать, как «поют» конденсаторы. Если вы использовали пьезоэлектрический конденсатор для обеспечения частотной стабилизации, вы могли обнаружить, что его звук модулируется вибрацией его окружения.

Как мы уже упоминали, статья не ставит целью охватить все технологии конденсаторов. Взглянув в каталог электроники вы обнаружите, что некоторые технологии, имеющиеся в наличии, здесь не освещены. Некоторые предложения из каталогов уже устарели, или же имеют такую узкую нишу, что с ними чаще всего и не встретишься. Мы надеялись лишь развеять некоторые тайны по поводу популярных моделей конденсаторов, и помочь вам в выборе подходящих компонентов при разработке собственных устройств. Если мы разогрели ваш аппетит, вы можете изучить нашу статью по катушкам индуктивности.

Об обнаруженных вами неточностях и ошибках прошу писать через

Во всех радиотехнических и электронных устройствах кроме транзисторов и микросхем применяются конденсаторы. В одних схемах их больше, в других меньше, но совсем без конденсаторов не бывает практически ни одной электронной схемы.

При этом конденсаторы могут выполнять в устройствах самые разные задачи. Прежде всего, это емкости в фильтрах выпрямителей и стабилизаторов. С помощью конденсаторов передается сигнал между усилительными каскадами, строятся фильтры низких и высоких частот, задаются временные интервалы в выдержках времени и подбирается частота колебаний в различных генераторах.

Свою родословную конденсаторы ведут от , которую в середине XVIII века в своих опытах использовал голландский ученый Питер ван Мушенбрук. Жил он в городе Лейдене, так что нетрудно догадаться, почему так называлась эта банка.

Собственно это и была обыкновенная стеклянная банка, выложенная внутри и снаружи оловянной фольгой - станиолем. Использовалась она в тех же целях, как и современная алюминиевая, но тогда алюминий открыт еще не был.

Единственным источником электричества в те времена была электрофорная машина, способная развивать напряжение до нескольких сотен киловольт. Вот от нее и заряжали лейденскую банку. В учебниках физики описан случай, когда Мушенбрук разрядил свою банку через цепь из десяти гвардейцев взявшихся за руки.

В то время никто не знал, что последствия могут быть трагическими. Удар получился достаточно чувствительным, но не смертельным. До этого не дошло, ведь емкость лейденской банки была незначительной, импульс получился очень кратковременным, поэтому мощность разряда была невелика.

Как устроен конденсатор

Устройство конденсатора практически ничем не отличается от лейденской банки: все те же две обкладки, разделенные диэлектриком. Именно так на современных электрических схемах изображаются конденсаторы. На рисунке 1 показано схематичное устройство плоского конденсатора и формула для его расчета.

Рисунок 1. Устройство плоского конденсатора

Здесь S - площадь пластин в квадратных метрах, d - расстояние между пластинами в метрах, C - емкость в фарадах, ε - диэлектрическая проницаемость среды. Все величины, входящие в формулу, указаны в системе СИ. Эта формула справедлива для простейшего плоского конденсатора: можно просто расположить рядом две металлические пластины, от которых сделаны выводы. Диэлектриком может служить воздух.

Из этой формулы можно понять, что емкость конденсатора тем больше, чем больше площадь пластин и чем меньше расстояние между ними. Для конденсаторов с другой геометрией формула может быть иной, например, для емкости одиночного проводника или . Но зависимость емкости от площади пластин и расстояния между ними та же, что и у плоского конденсатора: чем больше площадь и чем меньше расстояние, тем больше емкость.

На самом деле пластины не всегда делаются плоскими. У многих конденсаторов, например металлобумажных, обкладки представляют собой алюминиевую фольгу свернутую вместе с бумажным диэлектриком в плотный клубок, по форме металлического корпуса.

Для увеличения электрической прочности тонкая конденсаторная бумага пропитывается изолирующими составами, чаще всего трансформаторным маслом. Такая конструкция позволяет делать конденсаторы с емкостью до нескольких сотен микрофарад. Примерно так же устроены конденсаторы и с другими диэлектриками.

Формула не содержит никаких ограничений на площадь пластин S и расстояние между пластинами d. Если предположить, что пластины можно развести очень далеко, и при этом площадь пластин сделать совсем незначительной, то какая-то емкость, пусть небольшая, все равно останется. Подобное рассуждение говорит о том, что даже просто два проводника, расположенные по соседству, обладают электрической емкостью.

Этим обстоятельством широко пользуются в высокочастотной технике: в некоторых случаях конденсаторы делаются просто в виде дорожек печатного монтажа, а то и просто двух скрученных вместе проводков в полиэтиленовой изоляции. Обычный провод-лапша или кабель также обладают емкостью, причем с увеличением длины она увеличивается.

Кроме емкости C, любой кабель обладает еще и сопротивлением R. Оба этих физических свойства распределены по длине кабеля, и при передаче импульсных сигналов работают как интегрирующая RC - цепочка, показанная на рисунке 2.

Рисунок 2.

На рисунке все просто: вот схема, вот входной сигнал, а вот он же на выходе. Импульс искажается до неузнаваемости, но это сделано специально, для чего и собрана схема. Пока же речь идет о влиянии емкости кабеля на импульсный сигнал. Вместо импульса на другом конце кабеля появится вот такой «колокол», а если импульс короткий, то он может и вовсе не дойти до другого конца кабеля, вовсе пропасть.

Исторический факт

Здесь вполне уместно вспомнить историю о том, как прокладывали трансатлантический кабель. Первая попытка в 1857 году потерпела неудачу: телеграфные точки - тире (прямоугольные импульсы) искажались так, что на другом конце линии длиной 4000 км разобрать ничего не удалось.

Вторая попытка была предпринята в 1865 году. К этому времени английский физик У. Томпсон разработал теорию передачи данных по длинным линиям. В свете этой теории прокладка кабеля оказалась более удачной, сигналы принять удалось.

За этот научный подвиг королева Виктория пожаловала ученого рыцарством и титулом лорда Кельвина. Именно так назывался небольшой город на побережье Ирландии, где начиналась прокладка кабеля. Но это просто к слову, а теперь вернемся к последней букве в формуле, а именно, к диэлектрической проницаемости среды ε.

Немножко о диэлектриках

Эта ε стоит в знаменателе формулы, следовательно, ее увеличение повлечет за собой возрастание емкости. Для большинства используемых диэлектриков, таких как воздух, лавсан, полиэтилен, фторопласт эта константа практически такая же, как у вакуума. Но вместе с тем существует много веществ, диэлектрическая проницаемость которых намного выше. Если воздушный конденсатор залить ацетоном или спиртом, то его емкость возрастет раз в 15…20.

Но подобные вещества обладают кроме высокой ε еще и достаточно высокой проводимостью, поэтому такой конденсатор заряд держать будет плохо, он быстро разрядится сам через себя. Это вредное явление называется током утечки. Поэтому для диэлектриков разрабатываются специальные материалы, которые позволяют при высокой удельной емкости конденсаторов обеспечивать приемлемые токи утечки. Именно этим и объясняется такое разнообразие видов и типов конденсаторов, каждый из которых предназначен для конкретных условий.

Наибольшей удельной емкостью (соотношение емкость / объем) обладают . Емкость «электролитов» достигает до 100 000 мкФ, рабочее напряжение до 600В. Такие конденсаторы работают хорошо только на низких частотах, чаще всего в фильтрах источников питания. Электролитические конденсаторы включаются с соблюдением полярности.

Электродами в таких конденсаторах является тонкая пленка из оксида металлов, поэтому часто эти конденсаторы называют оксидными. Тонкий слой воздуха между такими электродами не очень надежный изолятор, поэтому между оксидными обкладками вводится слой электролита. Чаще всего это концентрированные растворы кислот или щелочей.

На рисунке 3 показан один из таких конденсаторов.

Рисунок 3. Электролитический конденсатор

Чтобы оценить размеры конденсатора рядом с ним сфотографировался простой спичечный коробок. Кроме достаточно большой емкости на рисунке можно разглядеть еще и допуск в процентах: ни много ни мало 70% от номинальной.

В те времена, когда компьютеры были большими и назывались ЭВМ, такие конденсаторы стояли в дисководах (по-современному HDD). Информационная емкость таких накопителей теперь может вызвать лишь улыбку: на двух дисках диаметром 350 мм хранилось 5 мегабайт информации, а само устройство весило 54 кг.

Основным назначением показанных на рисунке суперконденсаторов был вывод магнитных головок из рабочей зоны диска при внезапном отключении электроэнергии. Такие конденсаторы могли хранить заряд несколько лет, что было проверено на практике.

Чуть ниже с электролитическими конденсаторами будет предложено проделать несколько простых опытов, чтобы понять, что может делать конденсатор.

Для работы в цепях переменного тока выпускаются неполярные электролитические конденсаторы, вот только достать их почему-то очень непросто. Чтобы как-то эту проблему обойти, обычные полярные «электролиты» включают встречно-последовательно: плюс-минус-минус-плюс.

Если полярный электролитический конденсатор включить в цепь переменного тока, то сначала он будет греться, а потом раздастся взрыв. Отечественные старые конденсаторы разлетались во все стороны, импортные же имеют специальное приспособление, позволяющее избежать громких выстрелов. Это, как правило, либо крестовая насечка на донышке конденсатора, либо отверстие с резиновой пробкой, расположенное там же.

Очень не любят электролитические конденсаторы повышенного напряжения, даже если полярность соблюдена. Поэтому никогда не надо ставить «электролиты» в цепь, где предвидится напряжение близкое к максимальному для данного конденсатора.

Иногда в некоторых, даже солидных форумах, начинающие задают вопрос: «На схеме означен конденсатор 470µF * 16V, а у меня есть 470µF * 50V, можно ли его поставить?». Да, конечно можно, вот обратная замена недопустима.

Конденсатор может накапливать энергию

Разобраться с этим утверждением поможет простая схема, показанная на рисунке 4.

Рисунок 4. Схема с конденсатором

Главным действующим лицом этой схемы является электролитический конденсатор C достаточно большой емкости, чтобы процессы заряда - разряда протекали медленно, и даже очень наглядно. Это дает возможность наблюдать работу схемы визуально с помощью обычной лампочки от карманного фонаря. Фонари эти давно уступили место современным светодиодным, но лампочки для них продаются до сих пор. Поэтому, собрать схему и провести простые опыты очень даже просто.

Может быть, кто-то скажет: «А зачем? Ведь и так все очевидно, да если еще и описание почитать…». Возразить тут, вроде, нечего, но любая, даже самая простая вещь остается в голове надолго, если ее понимание пришло через руки.

Итак, схема собрана. Как она работает?

В положении переключателя SA, показанном на схеме, конденсатор C заряжается от источника питания GB через резистор R по цепи: +GB __ R __ SA __ C __ -GB. Зарядный ток на схеме показан стрелкой с индексом iз. Процесс заряда конденсатора показан на рисунке 5.

Рисунок 5. Процесс заряда конденсатора

На рисунке видно, что напряжение на конденсаторе возрастает по кривой линии, в математике называемой экспонентой. Ток заряда прямо-таки зеркально отражает напряжение заряда. По мере того, как напряжение на конденсаторе растет, ток заряда становится все меньше. И только в начальный момент соответствует формуле, показанной на рисунке.

Через некоторое время конденсатор зарядится от 0В до напряжения источника питания, в нашей схеме до 4,5В. Весь вопрос в том, как это время определить, сколько ждать, когда же конденсатор зарядится?

Постоянная времени «тау» τ = R*C

В этой формуле просто перемножаются сопротивление и емкость последовательно соединенных резистора и конденсатора. Если, не пренебрегая системой СИ, подставить сопротивление в Омах, емкость в Фарадах, то результат получится в секундах. Именно это время необходимо для того, чтобы конденсатор зарядился до 36,8% напряжения источника питания. Соответственно для заряда практически до 100% потребуется время 5* τ.

Часто, пренебрегая системой СИ, подставляют в формулу сопротивление в Омах, а емкость в микрофарадах, тогда время получится в микросекундах. В нашем случае результат удобнее получить в секундах, для чего придется микросекунды просто умножить на миллион, а проще говоря, переместить запятую на шесть знаков влево.

Для схемы, показанной на рисунке 4, при емкости конденсатора 2000мкФ и сопротивлении резистора 500Ω постоянная времени получится τ = R*C = 500 * 2000 = 1000000 микросекунд или ровно одна секунда. Таким образом, придется подождать приблизительно 5 секунд, пока конденсатор зарядится полностью.

Если по истечении указанного времени переключатель SA перевести в правое положение, то конденсатор C разрядится через лампочку EL. В этот момент получится короткая вспышка, конденсатор разрядится и лампочка погаснет. Направление разряда конденсатора показано стрелкой с индексом iр. Время разряда также определяется постоянной времени τ. График разряда показан на рисунке 6.

Рисунок 6. График разряда конденсатора

Конденсатор не пропускает постоянный ток

Убедиться в этом утверждении поможет еще более простая схема, показанная на рисунке 7.

Рисунок 7. Схема с конденсатором в цепи постоянного тока

Если замкнуть переключатель SA, то последует кратковременная вспышка лампочки, что свидетельствует о том, что конденсатор C зарядился через лампочку. Здесь же показан и график заряда: в момент замыкания переключателя ток максимальный, по мере заряда конденсатора уменьшается, а через некоторое время прекращается совсем.

Если конденсатор хорошего качества, т.е. с малым током утечки (саморазряда) повторное замыкание выключателя к вспышке не приведет. Для получения еще одной вспышки конденсатор придется разрядить.

Конденсатор в фильтрах питания

Конденсатор ставится, как правило, после выпрямителя. Чаще всего выпрямители делаются двухполупериодными. Наиболее распространенные схемы выпрямителей показаны на рисунке 8.

Рисунок 8. Схемы выпрямителей

Однополупериодные выпрямители также применяются достаточно часто, как правило, в тех случаях, когда мощность нагрузки незначительна. Самым ценным качеством таких выпрямителей является простота: всего один диод и обмотка трансформатора.

Для двухполупериодного выпрямителя емкость конденсатора фильтра можно рассчитать по формуле

C = 1000000 * Po / 2*U*f*dU, где C емкость конденсатора мкФ, Po мощность нагрузки Вт, U напряжение на выходе выпрямителя В, f частота переменного напряжения Гц, dU амплитуда пульсаций В.

Большое число в числителе 1000000 переводит емкость конденсатора из системных Фарад в микрофарады. Двойка в знаменателе представляет собой число полупериодов выпрямителя: для однополупериодного на ее месте появится единица

C = 1000000 * Po / U*f*dU,

а для трехфазного выпрямителя формула примет вид C = 1000000 * Po / 3*U*f*dU.

Суперконденсатор - ионистор

В последнее время появился новый класс электролитических конденсаторов, так называемый . По своим свойствам он похож на аккумулятор, правда, с несколькими ограничениями.

Заряд ионистора до номинального напряжения происходит в течение короткого времени, буквально за несколько минут, поэтому его целесообразно использовать в качестве резервного источника питания. По сути ионистор прибор неполярный, единственное, чем определяется его полярность это зарядкой на заводе - изготовителе. Чтобы в дальнейшем эту полярность не перепутать она указывается знаком +.

Большую роль играют условия эксплуатации ионисторов. При температуре 70˚C при напряжении 0,8 от номинального гарантированная долговечность не более 500 часов. Если же прибор будет работать при напряжении 0,6 от номинального, а температура не превысит 40 градусов, то исправная работа возможна в течение 40 000 часов и более.

Наиболее распространенное применение ионистора это источники резервного питания. В основном это микросхемы памяти или электронные часы. В этом случае основным параметром ионистора является малый ток утечки, его саморазряд.

Достаточно перспективным является использование ионисторов совместно с солнечными батареями. Здесь также сказывается некритичность к условию заряда и практически неограниченное число циклов заряд-разряд. Еще одно ценное свойство в том, что ионистор не нуждается в обслуживании.

Пока получилось рассказать, как и где работают электролитические конденсаторы, причем, в основном в цепях постоянного тока. О работе конденсаторов в цепях переменного тока будет рассказано в другой статье - .

Конденсатор – элемент, способный накапливать электрическую энергию. Название происходит от латинского слова «condensare» — «сгущать», «уплотнять».

Первый конденсатор был создан в 1745 году Питером ванн Мушенбруком. В честь города Лейдена, в котором его создали, изобретение впоследствии назвали «Лейденской банкой».

Конденсатор состоит из металлических электродов – обкладок, между которыми находится диэлектрик. По сравнению с обкладками, диэлектрик имеет небольшую толщину. Это и определяет свойство конденсатора накапливать заряд: положительные и отрицательные заряды на его обкладках удерживают друг друга, взаимодействуя через тонкий непроводящий слой.

Емкость конденсатора зависит от:

  • площади обкладок (S);
  • расстояния между ними (d);
  • диэлектрической проницаемости материала диэлектрика между обкладками (ԑ).

Связаны они между собой формулой (формула емкости конденсатора):


Для увеличения площади обкладок пластины некоторых конденсаторов изготавливают из полосок фольги, разделенных полоской диэлектрика и скрученных в рулон. Увеличить емкость также можно уменьшением толщины диэлектрика между обкладками и применением материалов с большей диэлектрической проницаемостью. Между обкладками конденсаторов располагают твердые, жидкие вещества и газы, в том числе и воздух.

Конденсаторы небольшой емкости получают на печатных платах, располагая две дорожки напротив друг друга.

Каким бы качественным не был диэлектрик в конденсаторе, он все равно имеет сопротивление. Его величина велика, но в заряженном состоянии конденсатора ток между обкладками все равно есть. Это приводит к явлению «саморазряда »: заряженный конденсатор со временем теряет свой заряд.

Принцип работы конденсатора: его заряд и разряд

Заряд конденсатора. В момент подключения к источнику постоянного тока через конденсатор начинает протекать ток заряда. Он убывает по мере зарядки конденсатора и в итоге падает до величины тока саморазряда, определяющегося проводимостью материала диэлектрика.

Напряжение на конденсаторе плавно нарастает от нуля до напряжения источника питания.

При заряде конденсатора ток и напряжение изменяются по экспоненциальному закону. Время заряда можно определить по формуле:

Если сопротивление в формулу подставить в Омах, в емкость – в Фарадах, то получим время в секундах, за которое напряжение на конденсаторе изменится в е ≈ 2,72 раз. Конденсатор большей емкости будет разряжаться дольше, и быстрее разрядится на меньшую величину сопротивления.

Разряд конденсатора. Если к заряженному конденсатору подключить сопротивление нагрузки, то ток через нее вначале будет максимальным, затем плавно упадет до нуля. Напряжение на его обкладках тоже будет изменяться по экспоненциальному закону.

Применение конденсаторов

Наряду с резисторами конденсаторы являются самыми распространенными компонентами. Ни одно электронное изделие не может без него обойтись. Вот краткий перечень направлений использования конденсаторов.

Блоки питания : в качестве сглаживающих фильтров при преобразовании пульсирующего тока в постоянный.

Звуковоспроизводящая техника : создание при помощи RC-цепочек элементов схем, пропускающих звуковые сигналы одних частот и задерживая остальные. За счет этого удается регулировать тембр и формировать амплитудно-частотные характеристики устройств.

Радио- и телевизионная техника : совместно с катушками индуктивности конденсаторы используются в составе устройств настройки на передающую станцию, выделения полезного сигнала, фильтрации помех.

Электротехника . Для создания фазовых сдвигов в обмотках однофазных электродвигателей или в схемах подключения трехфазных двигателей в однофазную сеть. Используются в установках, компенсирующих реактивную мощность.

При помощи конденсаторов можно накопить заряд, превышающий по мощности источник питания. Это используется для работы фотовспышек , а также в установках для отыскания повреждений в кабельных линиях, выдающих мощный высоковольтный импульс в место повреждения.

Похожие статьи