Основной метр децибел. Что измеряется в децибелах, единицы безразмерной, величины относительной, их особенности

10.08.2019

Области применения

Первоначально децибел использовался для измерения отношений энергетических (мощность , энергия) или силовых (напряжение, сила тока) величин. В принципе, с помощью децибелов можно измерять что угодно, но в настоящее время рекомендуется употреблять децибелы только для измерения уровня мощности и некоторых других связанных с мощностью величин. Так децибелы сегодня используются в акустике для измерения громкости звука и в электронике для измерения мощности электрического сигнала . Иногда в децибелах также измеряют динамический диапазон (например, звучания музыкальных инструментов). Также децибел является единицей звукового давления.

Измерение мощности

Как уже было сказано выше, изначально белы использовались для оценки отношения мощностей , поэтому в каноническом, привычном смысле величина, выраженная в белах, означает логарифмическое отношение двух мощностей и вычисляется по формуле:

величина в белах =

где P 1 / P 0 - отношение уровней двух мощностей, обычно измеряемой к т. н. опорной , базовой (взятой за нулевой уровень). Если говорить более точно, то это - «белы по мощности» . Тогда отношение двух величин в «децибелах по мощности» вычисляется по формуле:

величина в децибелах (по мощности) =

Измерение немощностных величин

Формулы для вычисления в децибелах разностей уровней немощностных (неэнергетических) величин, таких как напряжение или сила тока , отличаются от приведённой выше! Но в конечном итоге отношение этих величин, выраженное в децибелах, также выражается через отношение связанных с ними мощностей.

Так для линейной цепи справедливо равенство или

Отсюда видим, что а значит

откуда получаем равенство: которое представляет собой связь между «белами по мощности» и «белами по напряжению» в одной и той же цепи.

Из всего этого видим, что при сравнении величин напряжений (U 1 и U 2) или токов (I 1 и I 2) их отношения в децибелах выражаются формулами:

децибелы по напряжению = децибелы по току =

Можно подсчитать, что при измерении мощности изменению на 1 дБ соответствует приращение мощности (P 2 /P 1) в ≈1,25893 раза. Для напряжения или силы тока изменению на 1 дБ будет соответствовать приращение в ≈1,122 раза.

Пример вычислений

Предположим, что мощность P 2 в 2 раза больше начальной мощности P 1 , тогда

10 log 10 (P 2 /P 1) = 10 log 10 2 ≈ 3 дБ,

то есть изменение мощности на 3 дБ означает её увеличение в 2 раза. Аналогично изменение мощности в 10 раз:

10 log 10 (P 2 /P 1) = 10 log 10 10 = 10 дБ,

а в 1000 раз

10 log 10 (P 2 /P 1) = 10 log 10 1000 = 30 дБ,

И, наоборот, чтобы получить разы из децибел (dB), нужно

Для мощности - для напряжения (тока) .

Например, зная опорный уровень (P 1) и значение в дБ можно найти значение мощности, например, при P 1 = 1 мВт и известном отношении 20 дБ (dB):

Аналогично для напряжения, при U 1 = 2 В и отношении в 6 дБ:

Вычисления вполне реально производить в уме, для этого достаточно помнить примерную несложную таблицу (для мощностей):

1 дБ 1.25 3 дБ 2 6 дБ 4 9 дБ 8 10 дБ 10 20 дБ 100 30 дБ 1000

Сложению (вычитанию) значений дБ соответствует умножение (деление) самих отношений. Отрицательные значения дБ соответствуют обратным отношениям. Например, уменьшение мощности в 40 раз это 4*10 раз или −6 дБ-10 дБ= −16 дБ. Увеличение мощности в 128 раз это 2^7 или 3 дБ*7=21 дБ. Увеличение напряжения в 4 раза эквивалентно увеличению мощности в 4*4=16 раз, это 2^4 или 3 дБ*4=12 дБ.

Практическое применение

Поскольку децибел - не абсолютная, а относительная величина и вычисляется для различных физических величин по-разному (см. выше), то во избежание путаницы при использовании децибелов на практике существуют дополнительные договорённости.

чаще всего нужно знать отношение двух уровней (напряжений), выраженное в децибелах, есть несколько значений, которые легко запомнить:

6 дБ - отношение 2:1

20 дБ - отношение 10:1

40 дБ - отношение 100:1

60 дБ - отношение 1000:1

80 дБ - отношение 10000:1

100 дБ - отношение 100000:1

120 дБ - отношение 1000000:1

Промежуточные значения можно легко вычислить по формуле - 20*Lg(U1/U2), где U1 - уровень(напряжение) сигнала,U2 - уровень(напряжение) шума, напомним, что измерения проводятся средне-квадратичным милливольтметром, либо анализатором спектра с фильтром МЭК(А), где МЭК - Международная электротехническая комиссия

Зачем вообще применять децибелы и оперировать логарифмами, если то же самое можно выразить привычными процентами или долями? Представим себе, что в совершенно тёмной комнате включили лампочку некоторой светосилы. При этом, комната разительно отличается по виду до и после включения. Изменение освещённости, выраженное в дБ, тоже огромно, теоретически бесконечно. Допустим, что теперь включили ещё одну такую же лампочку. Теперь эффект будет совсем не тот, может быть даже человек не сразу заметит изменения, если её включить плавно. И в децибелах это будет всего 3 дБ. Итак, на практике, в децибелах удобно выполнять измерения как сильно меняющихся величин, так и почти постоянных.

Условные обозначения

Для различных физических величин одному и тому же числовому значению , выраженному в децибелах , могут соответствовать разные уровни сигналов (вернее разности уровней). Поэтому во избежание путаницы такие «конкретизированные» единицы измерения обозначают теми же буквами «дБ», но с добавлением индекса - общепринятого обозначения измеряемой физической величины. Например «дБВ» (децибел относительно вольта) или «дБмкВ» (децибел относительно микровольта), «дБВт» (децибел относительно ватта) и т. п. В соответствии с международным стандартом МЭК 27-3 при необходимости указать исходную величину ее значение помещают в скобках за обозначением логарифмической величины, например для уровня звукового давления: L P (re 20 µPA) = 20 dB; L P (исх. 20 мкПа) = 20 дБ

Применение в теории автоматического регулирования

Децибел также используется в теории автоматического регулирования и управления (ТАУ) и является одним из важнейших параметров при сравнении амплитуд выходного и входного сигналов.

Опорный уровень

Несмотря на то, что децибел служит для определения отношения двух величин, иногда децибелы используют и для измерения абсолютных значений. Для этого достаточно условиться, какой уровень измеряемой физической величины будет принят за опорный уровень (условный 0). На практике распространены следующие опорные уровни и специальные обозначения для них:

Во избежание путаницы желательно указывать опорный уровень явно, например −20 дБ (относительно 0,775 B) .

При пересчёте уровней мощностей в уровни напряжений и обратно надо обязательно учитывать сопротивление, являющиеся стандартным для данной задачи:

  • дБВ для 50-омной СВЧ -цепи соответствует (дБм−13 дБ);
  • дБмкВ для 50-омной СВЧ-цепи соответствует (дБм+107 дБ)
  • дБВ для 75-омной ТВ -цепи соответствует (дБм−11 дБ);
  • дБмкВ для 75-омной ТВ-цепи соответствует (дБм+109 дБ)

Следует чётко помнить математические правила:

  • перемножать или делить относительные единицы нельзя;
  • суммирование или вычитание относительных единиц производится независимо от их исходной размерности и соответствует умножению или делению абсолютных.

Например, подав на один конец 50-омного кабеля с коэффициентом передачи −6 дБ, мощность 0 дБм, что эквивалентно 1 мВт, или 0,22 В, или 107 дБмкВ, на выходе получим мощность −6 дБм, что эквивалентно 0,25 мВт (в 4 раза меньше по мощности) или 0,11 В (в два раза меньше по напряжению) или 101 дБмкВ (на те же 6 дБ меньше).

Децибел - это безразмерная единица, применяемая для измерения отношения некоторых «энергетических»(мощности, энергии, плотности потока мощности и т. п.) или «силовых»(силы тока, напряжения и т. п.) величин. Иными словами, децибел - это относительная величина. Не абсолютная, как, например, ватт или вольт, а такая же относительная, как кратность («трёхкратное отличие») или проценты, предназначенная для измерения отношения («соотношения уровней») двух других величин, причём к полученному отношению применяется логарифмический масштаб.

Впервые использованная для измерений интенсивности звука, единица измерения децибел была названа так в честь Александра Грэхема Бэлла. Изначально дБ использовался для оценки отношения мощностей, и в каноническом, привычном смысле величина, выраженная в дБ, предполагает логарифм отношения двух мощностей и вычисляется по формуле:

где P 1 /P 0 - отношение значений двух мощностей: измеряемой P 1 к так называемой опорной P 0 , то есть базовой, взятой за нулевой уровень (имеется в виду нулевой уровень в единицах дБ, поскольку в случае равенства мощностей P 1 = P 0 логарифм их отношения lg(P 1 /P 0) = 0).

Соответственно, переход от дБ к отношению мощностей осуществляется по формуле:

P 1 /P 0 = 10 0,1· (величина в дБ) ,

а мощность P 1 может быть найдена при известной опорной мощности P 0 по выражению

P 1 = P 0 · 10 0,1· (величина в дБ) .

Выражение берёт своё начало из закона Вебера-Фехнера - эмпирического психофизиологического закона, который заключается в том, что интенсивность ощущения пропорциональна логарифму интенсивности раздражителя.

В ряде экспериментов, начиная с 1834 года, Э. Вебер показал, что новый раздражитель, чтобы отличаться по ощущениям от предыдущего, должен отличаться от исходного на величину, пропорциональную исходному раздражителю. На основе наблюдений Г.Фехнер в 1860 году сформулировал «основной психофизический закон», по которому сила ощущения p пропорциональна логарифму интенсивности раздражителя :

где - значение интенсивности раздражителя. - нижнее граничное значение интенсивности раздражителя: если , раздражитель совсем не ощущается. - константа, зависящая от субъекта ощущения.

Так, люстра, в которой 8 лампочек, кажется нам настолько же ярче люстры из 4-х лампочек, насколько люстра из 4-х лампочек ярче люстры из 2-х лампочек. То есть количество лампочек должно увеличиваться в одинаковое число раз, чтобы нам казалось, что прирост яркости постоянен. И наоборот, если абсолютный прирост яркости (разница в яркости «после» и «до») постоянен, то нам будет казаться, что абсолютный прирост уменьшается по мере роста самого значения яркости. Например, если добавить одну лампочку к люстре из двух лампочек, то кажущийся прирост в яркости будет значительным. Если же добавить одну лампочку к люстре из 12 лампочек, то мы практически не заметим прироста яркости.

Можно сказать и так: отношение минимального приращения силы раздражителя, впервые вызывающего новые ощущения, к исходной величине раздражителя есть величина постоянная.

Любые операции с децибелами упрощаются, если руководствоваться правилом: величина в дБ - это 10 десятичных логарифмов отношения двух одноименных энергетических величин. Всё остальное - следствия этого правила.

Операции с децибелами можно выполнять в уме: вместо умножения, деления, возведения в степень и извлечения корня применяется сложение и вычитание децибельных единиц. Для этого можно использовать таблицы соотношений (первые 2 - приближённые):

1 дБ → в 1,25 раза,

3 дБ → в 2 раза,

10 дБ → в 10 раз.

Раскладывая «более сложные значения» на «составные», получаем:

6 дБ = 3 дБ + 3 дБ → в 2·2 = в 4 раза,

9 дБ = 3 дБ + 3 дБ + 3 дБ → в 2·2·2 = в 8 раз,

12 дБ = 4 · (3 дБ) → в 2 4 = в 16 раз

и т. п., а также:

13 дБ = 10 дБ + 3 дБ → в 10·2 = в 20 раз,

20 дБ = 10 дБ + 10 дБ → в 10·10 = в 100 раз,

30 дБ = 3 · (10 дБ) → в 10³ = в 1000 раз.

Сложению (вычитанию) значений в дБ соответствует умножение (деление) самих отношений. Отрицательные значения дБ соответствуют обратным отношениям. Например:

    уменьшение мощности в 40 раз → это в 4·10 раз или на −(6 дБ + 10 дБ) = −16 дБ;

    увеличение мощности в 128 раз это 2 7 или на 7·(3 дБ) = 21 дБ;

    снижение напряжения в 4 раза эквивалентно снижению мощности (величины второго порядка) в 4² = 16 раз; и то и другое при R 1 = R 0 эквивалентно снижению на 4·(−3 дБ) = −12 дБ.

Для применения децибелов и оперирования логарифмами вместо процентов или долей есть ряд причин:

    характер отображения в органах чувств человека и животных изменений течения многих физических и биологических процессов пропорционален не амплитуде входного воздействия, а логарифму входного воздействия (живая природа живёт по логарифму). Поэтому вполне естественно шкалы приборов и вообще шкалы единиц устанавливать именно в логарифмические, в том числе, используя децибелы. Например, музыкальная равномерно темперированная шкала частот является одной из таких логарифмических шкал

    удобство логарифмической шкалы в тех случаях, когда в одной задаче приходится оперировать одновременно величинами, различающимися не во втором знаке после запятой, а в разы и, тем более, различающимися на много порядков (примеры: задача выбора графического отображения уровней сигнала, частотных диапазонов радиоприемников, расчет частот для настройки клавиатуры фортепьяно, расчеты спектров при синтезе и обработке музыкальных и других гармонических звуковых, световых волн, графические отображения скоростей в космонавтике, авиации, в скоростном транспорте, графическое отображения других переменных величин, изменения которых в широком диапазоне величин являются критически важными)

    удобство отображения и анализа величины, изменяющейся в очень широких пределах (примеры - диаграмма направленности антенны, амплитудно-частотная характеристика электрического фильтра)

Децибел служит для определения отношения двух величин. Но нет ничего удивительного в том, что децибел используют и для измерения абсолютных значений. Для этого достаточно условиться, какой уровень измеряемой физической величины будет принят за опорный уровень (условный 0 дБ).

Строго говоря, должно быть однозначно определено, какая именно физическая величина и какое именно её значение используются в качестве опорного уровня. Опорный уровень указывается в виде добавки, следующей за символами «дБ» (например, дБм), либо опорный уровень должен быть ясен из контекста (например, «дБ относительно 1 мВт»).

На практике распространены следующие опорные уровни и специальные обозначения для них:

    dBm (русское дБм ) - опорный уровень - это мощность в 1 мВт. Мощность обычно определяется на номинальной нагрузке (для профессиональной техники - обычно 10 кОм для частот менее 10 МГц, для радиочастотной техники - 50 Ом или 75 Ом). Например, «выходная мощность усилительного каскада составляет 13 дБм» (то есть мощность, выделяющаяся на номинальной для этого усилительного каскада нагрузке, составляет 20 мВт).

    dBV (русское дБВ ) - опорное напряжение 1 В на номинальной нагрузке (для бытовой техники - обычно 47 кОм); например, стандартизованный уровень сигнала для бытового аудиооборудования составляет −10 дБВ, то есть 0,316 В на нагрузке 47 кОм.

    dBuV (русское дБмкВ ) - опорное напряжение 1 мкВ; например, «чувствительность радиоприёмника, измеренная на антенном входе - −10 дБмкВ … номинальное сопротивление антенны - 50 Ом».

По аналогии образуются составные единицы измерений. Например, уровень спектральной плотности мощности дБВт/Гц - «децибельный» аналог единицы измерения Вт/Гц (мощность, выделяющаяся на номинальной нагрузке в полосе частот шириной в 1 Гц с центром на указанной частоте). Опорным уровнем в данном примере является 1 Вт/Гц, то есть физическая величина «спектральная плотность мощности», её размерность «Вт/Гц» и значение «1». Так, запись «-120 дБВт/Гц» полностью эквивалентна записи «10 −12 Вт/Гц».

В случае затруднения во избежание путаницы достаточно указать опорный уровень явно. Например, запись −20 дБ (относительно 0,775 B на нагрузке 50 Ом) исключает двойное толкование.

Справедливы следующие правила (следствие правил действий с размерными величинами):

    перемножать или делить «децибельные» значения нельзя (это бессмысленно);

    суммирование «децибельных» значений соответствует умножению абсолютных значений, вычитание «децибельных» значений - делению абсолютных значений;

    суммирование или вычитание «децибельных» значений может выполняться независимо от их «исходной» размерности. Например, равенство 10 дБм + 13 дБ = 23 дБм является корректным, полностью эквивалентно равенству 10 мВт · 20 = 200 мВт и может трактоваться как «усилитель с коэффициентом усиления 13 дБ увеличивает мощность сигнала с 10 дБм до 23 дБм».

При пересчёте уровней мощностей (дБВт, дБм) в уровни напряжений (дБВ, дБмкВ) и обратно необходимо учитывать сопротивление, на котором определяется мощность и напряжение.

В радиотехнике часто используется отношение отношение сигнал/шум (ОСШ; англ. signal-to-noise ratio) - безразмерная величина, равная отношению мощности полезного сигнала к мощности шума.

где P - средняя мощность, а A - среднеквадратичное значение амплитуды. Оба сигнала измеряются в полосе пропускания системы.

Обычно отношение сигнал/шум выражается в децибелах (дБ). Чем больше это отношение, тем меньше шум влияет на характеристики системы.

В аудиотехнике отношение сигнал/шум определяют путем измерения напряжения шума и сигнала на выходе усилителя или другого звуковоспроизводящего устройства среднеквадратичным милливольтметром либо анализатором спектра. Современные усилители и другая высококачественная аудиоаппаратура имеет показатель сигнал/шум около 100-120 дБ.

Бел (сокращение: B) - безразмерная единица измерения отношения (разности уровней) некоторых величин по логарифмической шкале. Согласно ГОСТ 8.417-2002 бел определяется как десятичный логарифм безразмерного отношения физической величины к одноименной физической величине, принимаемой за исходную:

при для одноименных энергетических величин;

при для одноименных „силовых“ величин;

Бел не входит в систему единиц СИ, однако, по решению Генеральной конференции по мерам и весам, допускается его применение без ограничений совместно с СИ. В основном, применяется в акустике (где в белах измеряется громкость звука) и электронике. Русское обозначение - Б; международное - B.

Логарифмическая шкала и логарифмические единицы часто используется в тех случаях, когда необходимо измерить некоторую величину, изменяющуюся в большом диапазоне. Примерами таких величин являются звуковое давление, магнитуда землетрясений, световой поток, различные частотно-зависимые величины, используемые в музыке (музыкальные интервалы), антенно-фидерных устройствах, электронике и акустике. Логарифмические единицы позволяют выразить отношения величин, изменяющихся в очень большом диапазоне с помощью удобных небольших чисел примерно так, как это делается при экспоненциальной записи чисел, когда любое очень большое или очень малое число может быть представлено в краткой форме в виде мантиссы и порядка. Например, мощность звука, издаваемого при запуске ракеты-носителя Сатурн, составляла 100 000 000 Вт или 200 дБ SWL. В то же время, мощность звука очень тихого разговора составляет 0,000000001 Вт или 30 дБ SWL (измерена в децибелах относительно мощности звука 10⁻¹² ватт, см. ниже).

Правда, удобные единицы? Но, как оказывается, они удобны далеко не для всех! Можно сказать, что большинство людей, плохо разбирающихся в физике, математике и технике, не понимают логарифмических единиц, таких как децибелы. Некоторые даже считают, что логарифмические величины относятся не к современной цифровой технике, а к тем временам, когда для инженерных расчетов использовали логарифмическую линейку!

Немного истории

Изобретение логарифмов упростило вычисления, так как они позволили заменить умножение сложением, которое выполняется значительно быстрее, чем умножение. Среди ученых, которые внесли значительный вклад в развитие теории логарифмов, можно отметить шотландского математика, физика и астронома Джона Непера, опубликовавшего в 1619 г. сочинение с описанием натуральных логарифмов, которые значительно упрощали вычисления.

Важным инструментом для практического использования логарифмов были таблицы логарифмов. Первая такая таблица была составлена английским математиком Генри Бригсом в 1617 году. Основываясь на работах Джона Непера и других ученых, английский математик и священник англиканской церкви Уильям Отред изобрел логарифмическую линейку, которая использовалась инженерами и учеными (включая и автора этой статьи) в течение последующих 350 лет, пока в середине семидесятых прошлого века ее не заменили карманные калькуляторы.

Определение

Логарифм - операция обратная возведению в степень. Число y является логарифмом числа x по основанию b

если соблюдается равенство

Иными словами, логарифм данного числа - это показатель степени, в которую нужно возвести число, называемое основанием, чтобы получить данное число. Можно сказать проще. Логарифм - это ответ на вопрос «Сколько раз нужно умножить одно число само на себя, чтобы получить другое число». Например, сколько раз нужно умножить число 5 само на себя, чтобы получить 25? Ответом является 2, то есть

По приведенному выше определению

Классификация логарифмических единиц

Логарифмические единицы широко используются в науке, технике и даже в таких ежедневных занятиях, как фотография и музыка. Имеются абсолютные и относительные логарифмические единицы.

С помощью абсолютных логарифмических единиц выражают физические величины, которые сравниваются с определенным фиксированным значением. Например, дБм (децибел милливатт) - это абсолютная логарифмическая единица мощности, в которой мощность сравнивается с 1 мВт. Отметим, что 0 дБм = 1 мВт. Абсолютные единицы прекрасно подходят для описания одиночной величины , а не соотношения двух величин. Абсолютные логарифмические единицы измерения физических величин всегда можно перевести в другие, обычные единицы измерения этих величин. Например, 20 дБм = 100 мВт или 40 дБВ = 100 В.

С другой стороны, относительные логарифмические единицы используются для выражения физической величины в форме отношения или пропорции других физических величин, например, в электронике, где для этого используют децибел (дБ). Логарифмические единицы хорошо подходят для описания, например, коэффициента передачи электронных систем, то есть соотношения между выходным и входным сигналами.

Следует отметить, что все относительные логарифмические единицы являются безразмерными. Децибелы, неперы и другие названия - просто особые наименования, которые используются совместно с безразмерными единицами. Отметим также, что децибел часто используется с различными суффиксами, которые обычно присоединяются к сокращению дБ с помощью дефиса, например дБ-Гц, пробела, как в единице dB SPL, без какого-либо символа между дБ и суффиксом, как в дБм, или заключаются в кавычки, как в единице дБ(м²). Обо всех этих единицах мы поговорим ниже в этой статье.

Следует также отметить, что преобразование логарифмических единиц в обычные единицы часто бывает невозможным. Впрочем, это бывает только в тех случаях, когда говорят об отношениях. Например, коэффициент передачи усилителя по напряжению 20 дБ можно преобразовать только в «разы», то есть в безразмерную величину - он будет равным 10. В то же время, измеренное в децибелах звуковое давление можно перевести в паскали, так как звуковое давление измеряется в абсолютных логарифмических единицах, то есть, относительно опорного значения. Отметим, что коэффициент передачи в децибелах - тоже безразмерная величина, хотя и имеет название. Полная путаница получается! Но мы попробуем разобраться.

Логарифмические единицы измерения амплитуды и мощности

Мощность . Известно, что мощность пропорциональна квадрату амплитуды. Например, электрическая мощность, определяемая выражением P = U²/R. То есть, изменение амплитуды в 10 раз сопровождается изменением мощности в 100 раз. Соотношение двух величин мощности в децибелах определяется выражением

10 log₁₀(P₁/P₂) dB

Амплитуда . В связи с тем, что мощность пропорциональна квадрату амплитуды, соотношение двух величин амплитуды в децибелах описывается выражением

20 log₁₀(P₁/P₂) dB.

Примеры относительных логарифмических величин и единиц

  • Общие единицы
    • дБ (децибел) - логарифмическая безразмерная единица, используемая для выражения отношения двух произвольных значений одной и той же физической величины. Например, в электронике децибелы используются для описания усиления сигнала в усилителях или ослабления сигнала в кабелях. Децибел численно равен десятичному логарифму отношения двух физических величин, умноженному на десять для отношения мощностей и умноженному на 20 для отношения амплитуд.
    • Б (бел) - редко используемая логарифмическая безразмерная единица измерения отношения двух одноименных физических величин, равная 10 децибелам.
    • Н (непер) - безразмерная логарифмическая единица измерения отношения двух значений одноименной физической величины. В отличие от децибела, непер определяется как натуральный логарифм для выражения различия между двумя величинами x₁ и x₂ по формуле:

      R = ln(x₁/x₂) = ln(x₁) – ln(x₂)


      Преобразовать Н, Б и дБ можно на странице «Конвертер звука» .
  • Музыка, акустика и электроника
  • s = 1000 ∙ log₁₀(f₂/f₁)

  • Антенная техника. Логарифмическая шкала используется во многих относительных безразмерных единицах для измерения различных физических величин в антенной технике. В таких единицах измерения измеряемый параметр обычно сравниваются с соответствующим параметром стандартного типа антенны.
  • Связь и передача данных
    • дБн или dBc (децибел несущая, отношение по мощности) - безразмерная мощность радиосигнала (уровень излучения) по отношению к уровню излучения на частоте несущей, выраженная в децибелах. Определяется как S дБн = 10 log₁₀(P несущей /P модуляции). Если величина дБн положительная, то мощность модулированного сигнала больше, чем мощность немодулированной несущей. Если же величина дБн отрицательная, то мощность модулированного сигнала меньше мощности немодулированной несущей.
  • Электронная аппаратура звуковоспроизведения и звукозаписи
  • Другие единицы и величины

Примеры абсолютных логарифмических единиц и величин в децибелах с суффиксами и опорными уровнями

  • Мощность, уровень сигнала (абсолютные)
  • Напряжение (абсолютное)
  • Электрическое сопротивление (абсолютное)
    • дБОм, dBohm или dBΩ (децибел ом, амплитудное соотношение) - абсолютное сопротивление в децибелах относительно 1 Ом. Эта единица измерения удобна, если рассматривают большой диапазон сопротивлений. Например, 0 dBΩ = 1 Ω, 6 dBΩ = 2 Ω, 10 dBΩ = 3,16 Ω, 20 dBΩ = 10 Ω, 40 dBΩ = 100 Ω, 100 dBΩ = 100 000 Ω, 160 dBΩ = 100 000 000 Ω и так далее.
  • Акустика (абсолютный уровень звука, звуковое давление или интенсивность звука)
  • Радиолокация . Абсолютные значения по логарифмической шкале используются для измерения радиолокационной отражаемости по сравнению с какой-либо опорной величиной.
    • dBZ или dB(Z) (амплитудное соотношение) - абсолютный коэффициент радиолокационной отражаемости в децибелах относительно минимального облака Z = 1 мм⁶ м⁻³. 1 dBZ = 10 log (z/1 мм⁶ м³). Эта единица показывает количество капель в единице объема и используется метеорологическими радиолокационными станциями (метео-РЛС). Информация, полученная при измерениях в сочетании с другими данными, в частности, результатами анализа поляризации и допплеровского сдвига, позволяют оценить что происходит в атмосфере: идет ли дождь, снег, град, или летит стая насекомых или птиц. Например, 30 dBZ соответствует слабому дождю, а 40 dBZ - умеренному дождю.
    • dBη (амплитудное соотношение) - абсолютный фактор радиолокационной отражаемости объектов в децибелах относительно 1 см²/км³. Эта величина удобна, если нужно измерить радиолокационную отражаемость летающих биологических объектов, таких как птицы, летучие мыши. Метео-РЛС часто используются для наблюдения за подобными биологическими объектами.
    • дБ(м²), dBsm или dB(m²) (децибел квадратный метр, амплитудное соотношение) - абсолютная единица измерения эффективной площади рассеяния цели (ЭПР, англ. radar cross section, RCS) по отношению к квадратному метру. Насекомые и слабо отражающие цели имеют отрицательную эффективную площадь рассеяния, в то время как большие пассажирские самолеты - положительную.
  • Связь и передача данных. Абсолютные логарифмические единицы используются для измерения различных параметров, связанных с частотой, амплитудой и мощностью передаваемых и принимаемых сигналов. Все абсолютные значения в децибелах можно преобразовать в обычные единицы, соответствующие измеряемой величине. Например, уровень мощности шумов в dBrn можно преобразовать непосредственно в милливатты.
  • Другие абсолютные логарифмические единицы. Таких единиц много в разных отраслях науки и техники и здесь мы приведем лишь несколько примеров.
    • Шкала магнитуды землетрясений Рихтера содержит условные логарифмические единицы (используется десятичный логарифм), используемые для оценки силы землетрясения. Согласно этой шкале магнитуда землетрясения определяется как десятичный логарифм отношения амплитуды сейсмических волн к произвольно выбранной очень малой амплитуде, которая представляет магнитуду 0. Каждый шаг шкалы Рихтера соответствует увеличению амплитуды колебаний в 10 раз.
    • dBr (децибел относительно опорного уровня, соотношение по амплитуде или по мощности, задается явным образом) - логарифмическая абсолютная единица измерения какой-либо физической величины, задаваемой в контексте.
    • dBSVL - колебательная скорость частиц в децибелах относительно опорного уровня 5∙10⁻⁸ м/с. Название происходит от англ. sound velocity level - уровень скорости звука. Колебательная скорость частиц среды иначе называется акустической скоростью и определяет скорость, с которой движутся частицы среды при их колебаниях относительно положения равновесия. Опорная величина 5∙10⁻⁸ м/с соответствует колебательной скорости частиц для звука в воздухе.

Единица измерения Бел выражает не саму величину, а отношение одной величины к другой. Бел - единица логарифмическая. Чаще эта единица употребляется с десятичной приставкой «деци- », т.е. «десятая часть». В децибелах удобно измерять коэффициенты затухания и усиления:

Зачем логарифмы? Так ведь и человеческое восприятие имеет логарифмический характер! Представь себе пакет с покупками массой 1 кг. Если к этой массе добавить ещё литр килограмм, то изменение массы будет очень даже ощутимо. Если этот же килограмм добавить к массе, скажем, 15 кг, то прирост массы будет заметен, но уже почти не будет ощущаться. А уж если этот килограмм добавить к целой тонне, то прирост будет и вовсе незаметен. Чтобы толкать автомобиль с литром сока и без оного, требуется приложить одинаковое усилие.

Кроме того, вспоминаем математику логарифмов, и видим, как упрощаются некоторые расчёты.

Это уже упрощает жизнь. Решим простенькую задачку:
Мощность сигнала затухает в линии в 6,3 раза, на приёмной стороне усилитель повышает мощностью в 25 раз. Во сколько раз мощность сигнала на выходе усилителя будет больше или меньше, чем на выходе генератора?

Только что мы посчитали, во сколько раз мощность сигнала на выходе тракта отличается от подаваемой в тракт. Наверняка хочется знать величину этой мощности. Можно ли выразить сами величины в децибелах? Конечно можно! Для этого надо величину поделить на единицу.

Теперь посчитать мощность сигнала на выходе тракта, выраженную в дБВт , не составляет труда. Например, если подводимая мощность была 0,25Вт (-6дБВт), то мощность сигнала на выходе тракта

Около 1 Вт, как нетрудно догадаться. Пересчитаем в ватты:

Теперь запомни несколько утверждений:

  • Изменение мощности в 2 раза - это 3 дБ
  • Изменение мощности в 3 раза - это 4.8 дБ
  • Изменение мощности в 10 раз - это 10 дБ
  • Изменение мощности в 100 раз - это 20 дБ
Правильность этих утверждений легко проверить. И именно отсюда следует, что рост сигнала на 6 дБ (2 раза по 3 дБ) - это увеличение мощности в 4 раза (дважды 2 раза). А увеличиение мощности в 20 раз (10×2) - это увеличение на 13 дБ (10 + 3)

...изменение мощности...

Я намеренно писал выше только о мощностях. Мощность имеет квадратичную зависимость от напряжения и от тока, а изменение на 3 децибелла - это всегда и во всех случаях изменение мощности в 2 раза . Как мы помним, мощность зависит от квадрата напряжения или от квадрата тока:

Помним, что логарифм степени есть произведение показателя степени и логарифма основания. Показатель степени - это двойка, и умножать надо не на 10, а на 20. Выразим 2 Вольта в децибел-вольтах, и 3 децибел-вольта в Вольтах:


Просто и нестрашно!

  • В расчётах энергетических величин (мощность) фигурирует число 10
  • В расчётах силовых величин (напряжение, ток) фигурирует число 20

Немного расчётов

Порешаем немного расчётных задач, чтобы совсем уверенно ориентироваться в децибелах.

1. Громкость звука

Громкость звука тоже измеряется в децибелах. Помня о том, что децибел - это мера отношения двух величин, мы обязательно всегда уточняем, по отношению к чему измерены эти децибелы, т.е. где начало отсчёта. А в данном случае - по отношению к порогу слышимости человека: 2×10 -5 Н/м 2 . Ньютон - это системная единица силы, т.е. явно силовая величина, поэтому в расчётах фигурирует число 20. А давайте посчитаем, какую силу оказывает звуковое давление на барабанную перепонку в нашем ухе, при взлёте реактивного самолёта и при тихом разговоре.

Что мы знаем:

  • Величины в децибелах выражены по отношению к 2×10 -5 Н/м 2
  • Площадь барабанной перепонки у человека около 55 мм 2 , или 5,5×10 -5 м 2
  • Табличная громкость реактивного самолёта - 120 дБ на расстоянии 5 м
  • Табличная громкость тихого разговора - 50 дБ на расстоянии 1 м

Энштейн, Ньютон и Паскаль играли в прятки. Водить выпало Эйнштейну. Паскаль убежал в кусты, замаскировался, вообще не видно мужика, а вот Ньютон просто стоит. Нарисовал вокруг себя квадрат и стоит. Эйнштейн досчитал до ста, поворачивается, видит Ньютона и кричит:
— Ура! Я нашел Ньютона!
Ньютон хитро улыбнувшись отвечает:
— Ошибся, умник! Это Ньютон на квадратный метр! ТЫ НАШЕЛ ПАСКАЛЯ!!!

Посчитаем величину звукового давления в Паскалях, или Ньютонах на квадратный метр:

Умножаем давление в Паскалях на площадь в квадратных метрах, и получим величину силы в Ньютонах:

Пересчитаем Ньютоны в более ощутимые грамм-силы:

  • Реактивный самолёт оказывает давление
    0,0011 Н × 102 гс/Н = 0,1122 гc
  • Звук негромкого разговора давит на барабанную перепонку с силоу
    0,0000003479 Н × 102 гс/Н = 0,000035 гс

Как говорится, почувствуйте разницу! И не забывайте, что механизм слуха более сложен, и звук мы воспринимаем не только барабанной перепонкой в глубине уха!

2. Перевод уровня напряжения в мощность сигнала

На работе мы часто измеряем уровни радиосигнала на антенном входе измерительного приёмника. А измерительный приёмник по своим метрологическим свойствам близок к селективному вольтметру, и измеренная величина исчисляется в децибел-микровольтах (дБмкВ ). В то же время, часто в радиоизмерениях оперируют мощностью сигнала в точке приёма, нередко выраженной в децибел-милливаттах (дБм ). Давайте пересчитаем одно в другое!

И для пущего счастья, сделал онлайн-калькулятор, пересчитывающий напряжение в децибел-микровольтах в мощность в децибел-милливаттах и обратно (знаю-знаю, в интернете их и без меня бесчисленное множество! :))

Онлайн-калькулятор децибел

Правила пользования просты до безобразия. Измени значение любой из величин, и все остальные значения будут пересчитаны автоматически.

Напряжение, мВ:
Напряжение, dBμV:
Мощность, dBm:
Мощность, мВт:

Как это ни странно, звуки, лежащие за пределами слышимости человеческим ухом, играют огромную роль в различных областях знаний. Учёным, вооружённым методами современных компьютерных технологий и электроники, удалось не только расшифровать такие природные звуки, но и поставить их на службу человечеству.

Например, в странах, подвергающихся нашествию разрушительных цунами (Япония, Филиппины, Малайзия, Таиланд и Индонезия и других), развёрнута целая сеть станций раннего оповещения о таких событиях. Помимо береговых стационарных сейсмических станций, фиксирующих инфразвуки подводных землетрясений, развёрнута целая сеть автономных датчиков, находящихся в свободном плавании и связанных с центрами обработки информации через спутниковую связь. И есть надежда, что трагедиям, подобных трагедии 2004 года, когда от цунами пострадали сотни тысяч людей в Южной Азии, равно как и трагедии Фукусимы 2011 года, не суждено будет больше повториться. Пусть мы пока не в состоянии управлять подземными силами, и нам не избежать материальных потерь в ближайшем обозримом будущем, мы должны и сможем хотя бы свести к минимуму число человеческих жертв.

Инфразвуки с успехом применяются учёными-геофизиками при изучении свойств и характеристик Земли и отдельных её составляющих - коры, мантии и ядра. Высокоэкономичным методом в поиске полезных ископаемых, среди которых надо выделить особо ценные залежи нефти и природного газа, является сейсморазведка. Поскольку уже сейчас треть добываемой нефти приходится на добычу из моря, а морские неразведанные запасы превышают таковые запасы на суше, в последнее время всё больше внимания уделяется исследованиям морского дна. С помощью современных компьютерных технологий обработки отраженного и преломлённого инфразвукового сигнала можно получать 2D- и 3D-изображения залежей и оценивать перспективность их дальнейшей разработки.

Инфразвуковой контроль является неотъемлемой частью общего контроля за соблюдением выполнения Договора о всеобъемлющем запрещении ядерных испытаний, наравне с сейсмическим, химическим и радиологическим контролем. Инфразвуковой контроль удобен для обнаружения ядерных взрывов в связи с тем, что инфразвук способен проходить большие расстояния практически без рассеяния.

И пока пусть остаются библейским мифом разрушение стен Иерихона из-за звука труб (что с точки зрения современной науки вполне возможно, достаточно только достигнуть полного резонанса на инфразвуке), историческая наука не стоит на месте, вполне возможно, что мы сумеем отыскать материальные подтверждения знаний древних людей.

Историческая справка

Первое официальное наблюдение инфразвука было произведено во время мощного извержения вулкана Кракатау в Зондском проливе в 1883 году. Мощность взрыва вулкана была эквивалентна взрыву атомной бомбы в 200 мегатонн, что вчетверо превышает мощность испытания Советским Союзом водородной авиационной бомбы АН602 (русское название - изделие 202, англоязычное обозначение -RDS-202, никнейм «Big Ivan») мощностью более 50 мегатонн (русское расхожее название Царь-Бомба, по аналогии с Царь-пушкой и Царь-колоколом) 30 октября 1961 года на ядерном полигоне острова Новая Земля. Ударная волна от взрыва вулкана трижды обогнула земной шар, под ее воздействием в радиусе сотни километров разбивались стеклянные окна, звуки извержения были слышны в г. Перт (Западная Австралия, расстояние свыше 3000 километров) и на острове Родригес, что близ острова Маврикий (расстояние свыше 4800 километров).

Интерес к звукам, лежащим за пределами слышимости человеческим ухом, и связанных с ними физическими и психофизическими явлениями, начал проявляться по мере появления и развития таких наук, как радиотехника и электроника. Парадоксальным образом отсчет им положили работы физиков разных стран конца 19-го и начала 20-го века совершенно в другом диапазоне волн - радиодиапазоне. В их число заслуженно включаются такие выдающиеся учёные как Генрих Рудольф Герц, Александр Степанович Попов и Гульельмо Маркони.

Ключевым моментом в исследовании и генерации как аудиозвука, так и инфразвука и ультразвука явилось изобретение электронных усилителей. Вначале появились схемы на основе электронных ламп, разработкой которых мы обязаны целой плеяде замечательных изобретателей. Ещё в 1883 году Т. А. Эдисон первым обнаружил эффект проводимости в вакууме. Затем, в 1904 году, Д. А. Флеминг первым практически использовал эффект Эдисона для преобразования переменного тока в постоянный (выпрямление тока) с помощью двухэлектродной лампы (диода). В 1906 году Ли де Форест ввёл в лампу третий электрод - управляющую сетку, получив усилительный элемент триод. В 1912 году на её основе был создан первый автогенератор. Позднее на основе изобретения транзисторов, а потом интегральных схем были созданы более совершенные и экономичные схемы усиления и генерации электрических сигналов низкочастотного диапазона. Верхом этого процесса можно считать разработку цифровых методов анализа и синтеза звука любого мыслимого диапазона с помощью современных компьютерных технологий, которым поддаются даже методы визуализации звука.

Как всегда, впереди планеты всей по этой части стали военные инженеры. Они не только научились определять дислокацию вражеских артиллерийских батарей по инфразвукам от их выстрелов с закрытых позиций, но также научились обнаруживать скрытые под водой объекты в виде нового типа вооружений (подводных лодок), используя, помимо инфразвука, звук и ультразвук (гидроэхолокация). Специальность инженера-акустика стала неотъемлемым атрибутом и в морских, и в наземных войсках.

Инфразвук. определение и физика явлений

К инфразвуку относятся звуки с частотами ниже частот, воспринимаемых человеческим слухом, то есть с частотой ниже 20 Гц; нижняя граница инфразвука условно принимается равной 1 миллигерцу, однако на практике чаще рассматривают нижнюю границу 0,1 Гц.

При распространении в различных средах, инфразвук в общем подчиняется законам акустики, то есть способен затухать, отражаться и преломляться. Но имеются некоторые отличия:

  • для восприятия человеком через вибрации тела, инфразвук должен иметь более высокую амплитуду колебаний по сравнению со звуковыми волнами в диапазоне слышимости;
  • инфразвук гораздо дальше распространяется в воздухе, поскольку слабо поглощается атмосферой;
  • из-за большой длины волн, инфразвуку в большей степени, чем обычному звуку, свойственны дифракционные явления (огибание препятствий).

В природе инфразвук возникает при землетрясениях, ударах молний, извержениях вулканов, при сильном ветре, во время бурь и ураганов. На море усиление инфразвукового фона является верным признаком надвигающегося шторма; то же справедливо в отношении к сходу снежных лавин.

Восприятие инфразвуков животными

Совершенно естественно, что в живой природе наиболее чувствительными к действию инфразвуков являются животные крупных размеров: киты, слоны, бегемоты, носороги, жирафы, окапи, крокодилы, львы и тигры. Они не только воспринимают инфразвук, но и прекрасно его генерируют в силу размеров своих органов. Киты и слоны с успехом используют инфразвуковые сигналы для общения с себе подобными, причем дальность такой связи на суше может достигать при благоприятных условиях распространения инфразвука сотни километров. Хищники таким образом защищают свою охотничью территорию от посягательств на неё чужаков своего вида, хотя ареал обитания прайда не превышает радиуса 10 километров. В случае китов дальность связи может составлять даже несколько тысяч километров! Возможно, в открытом океане используется эффект дальнего прохождения за счёт образования своеобразного канала распространения инфразвука из-за разности температур, разности гидростатического давления и разности в солёности поверхностных и глубинных вод. Принцип действия этого канала аналогичен принципу передачи информации по волоконно-оптическому кабелю, в котором световые лучи распространяются также благодаря полному внутреннему отражению.

Техногенная генерация инфразвука

С момента возведения первых мегалитических сооружений (вспомните Стоунхендж!) человечество неосознанно стало техногенным генератором инфразвука, строя различные здания для хозяйственных, жилищных и религиозных нужд, камеры которых (комнаты, залы, печи и камины с дымоходами) служили своеобразными резонаторами инфразвука и пассивными генераторами под воздействием ветра. По мере освоения природных сил люди стали всё более активным генератором инфразвука. Первыми устройствами стали водяные и ветряные мельницы, хотя у них интенсивность инфразвука была не столь велика, тем не менее, производила некий мистический эффект. Недаром во всех преданиях различных народов профессия мельника, равно как и профессия кузнеца, вынужденного своими равномерными ударами молота вызывать инфразвук, окружена легендами с негативным подтекстом. Прямыми потомками этих устройств ныне являются напорные водоводы гидроэлектростанций, ветроэлектрогенераторы и механические молоты титанических размеров.

На производстве источником инфразвука также являются тяжёлые станки, где происходит возвратно-поступательное движение больших масс (например, поршневые компрессоры), вентиляторы и системы кондиционирования, турбины и виброплощадки и другое оборудование. Реактивные двигатели самолётов также излучают инфразвуковые волны. С освоением силы пара и массовым внедрением силовых установок на судах, мы стали генерировать инфразвуки не только на суше, но и на море.

Ныне основными источниками антропогенного шумового загрязнения океана являются суда, пневмопушки для сейсмической разведки полезных ископаемых на дне морей и океанов, морские буровые и эксплуатационные платформы для добычи нефти и газа, а также гидролокаторы, как военного, так и гражданского назначения. Источниками инфразвука также являются ядерные взрывы, причем инфразвук от них может распространяться по атмосферному волноводу на тысячи километров.

Биологи небезосновательно бьют тревогу, относя массовые выбросы китообразных на сушу за счёт антропогенных инфразвуков, звуков и ультразвуков, генерируемых нами. По их мнению, мы своим звуком просто сбиваем животных с курса, вызывая сбои их систем навигации. Сейчас шумовое загрязнение морей в полосе частот инфразвука достигает максимальной интенсивности, превышая акустическое загрязнение на остальных частотах в тысячи раз.

Воздействие инфразвука на человека

Человеческий организм и его психика подвержены влиянию инфразвука по той причине, что он стимулирует вестибулярный аппарат, а также в связи с тем, что почти все органы человека имеют резонансные частоты в пределах 8-20 Гц:

  • 20–30 Гц (резонанс головы);
  • 18 Гц и 40–100 Гц (резонанс глаз);
  • 0,5–13 Гц (резонанс вестибулярного аппарата);
  • 4–6 Гц (резонанс сердца);
  • 2–3 Гц (резонанс желудка);
  • 2–4 Гц (резонанс кишечника);
  • 6–8 Гц (резонанс почек);
  • 2–5 Гц (резонанс рук).

Разброс в значениях объясняется разбросом антропометрических данных среди представителей человечества.

Полагают, что инфразвуковые колебания даже небольшой интенсивности вызывают симптомы, схожие с сотрясением мозга (тошнота, шум в ушах, нарушения зрения). Колебания средней интенсивности могут стать причиной «непищевой» диареи и нарушений функций мозга с самыми неожиданными последствиями. Считается, что инфразвук высокой интенсивности, влекущий за собой резонанс, приводит к нарушению работы практически всех внутренних органов, возможен смертельный исход из-за остановки сердца или разрыва кровеносных сосудов.

Ещё более интересные эффекты производит инфразвук на психоэмоциональное состояние людей, подвергшихся его воздействию. В этом смысле показателен масштабный опыт, проведённый группой английских исследователей над аудиторией из 700 человек в лондонском концертом зале Перселл-Рум (Purcell Room), которым предлагалось прослушать музыкальный концерт в двух отделениях. Каждое из отделений состояло из четырёх произведений, в два из них в оригинальное исполнение подмешивался инфразвук частотой 17 Гц малой интенсивности, во втором отделении инфразвук подмешивался в два других произведения. Слушателям предлагалось описать свои ощущения и значительная часть респондентов (22%) отмечала необычные переживания: тревогу, беспокойство, крайнюю печаль, чувство отвращения и страха, озноб вдоль позвоночника и чувство давления в груди как раз в моменты подачи инфразвукового сигнала.

Крайне любопытным воздействием на человека инфразвука частотой 18,98 Гц стало обнаружение визуального эффекта английским инженером-исследователем Виком Тэнди в начале 80-х годов прошлого столетия. Засиживаясь допоздна в своей лаборатории, Тэнди неоднократно замечал периферическим зрением появление бесформенного серого пятна, которое исчезало при повороте головы в его сторону. Будучи заядлым фехтовальщиком, он также заметил, что при полировке рапиры, зажатой рукояткой в тиски, её кончик заметно дрожал. Предположив по вибрациям рапиры (лезвие рапиры играла роль приёмника-регистратора) наличие в помещении инфразвука, он исследовал помещение лаборатории и обнаружил, что инфразвук действительно присутствует - его источником был недавно установленный вытяжной вентилятор. Максимум инфразвукового сигнала отмечался как раз над рабочим столом Тэнди и его частота была близка к резонансной частоте глазного яблока 18 Гц, определённой НАСА. Работы в этом направлении были просуммированы В. Тэнди в статье «Призраки из машины», опубликованной 1998 году. В дальнейшем он по приглашению исследователей паранормальных явлений привлекался в рабочие группы по обследованию подвала туристического центра в Ковентри в 2001 году и Уорикского замка в 2004 году. В обоих случаях отмечался высокий уровень инфразвука. Так что появление призраков в английских замках имеет под собой вполне материальную основу!

«Фантомный» инфразвук

Еще более удивительным образом на человека влияет «фантомный» инфразвук. Дело в том, что из-за бинаурального эффекта слуха, присущего человеку и большинству высших животных, человеческий мозг оценивает источник звука по частоте, фазе и интенсивности сигнала, вычисляя направление на источник звука по этим признакам, в том числе и по разности фаз звуковых колебаний, поступающих в правое и левое ухо. В результате, при воздействии на правый и левый каналы слуха близких частот с разницей, лежащей в пределах восприятия звука, возникают «фантомные» ощущения восприятия звука «основного» тона при прослушивании более высоких частот (гармоник). При этом возникает «фантомное» восприятие основной частоты, хотя её в исходном сигнале вообще нет. Например, если одно ухо слышит сигнал с частотой 550 Гц, а другое с частотой 570 Гц, то мозг воспринимает (то есть, как будто, слышит) дополнительную частоту 20 Гц, которая является разностью этих двух частот. Следует отметить, что это не обычная сумма двух синусоидальных сигналов разных частот, в результате которой наблюдаются биения. Суммирование происходит в мозге, а не в воздухе! И звук формируется не в воздухе, а в мозге слушателя.

Иногда человек слышит низкочастотные звуки, которых в реальности нет. Это происходит из-за того, что мозг подвергает звук серьезной обработке, добавляя частоты, которых нет в звуках. Это явление широко используется в технике. Примером может служить телефонный канал, ограниченный полосой 300 -3000 Гц. Тем не менее, все мы уверенно определяем гендерную принадлежность голоса по телефону, хотя для представителей «сильного» пола характерная частота голоса составляет 150 Гц. Наш мозг, этот самый совершенный компьютер на текущий момент, обманывает нас!

Ещё хуже (а может быть и лучше) дело обстоит, когда два сигнала с небольшой разницей частот, которые лежат в диапазоне инфразвука, приходят в правое и левое ухо. Это, возможно, связано с тем обстоятельством, что электрическая активность человеческого мозга имеет несколько биоритмов, связанных с его состоянием. Некоторые из таких ритмов ЭЭГ рассмотрены ниже.

  • Бета-волны: самые быстрые, характерны для состояния бодрствования, сосредоточенности и познания. Их избыток сопровождается беспокойством, страхом и паникой. В зависимости от степени состояния может меняться в пределах 14–42 Гц. Слабый уровень бета-волн статистически коррелирует с депрессией, плохим избирательным вниманием и слабой памятью.
  • Альфа-волны: биоритмы мозга замедляются до частот в 8–13 Гц. Их доминанта соответствует состоянию умиротворённости, способности к восприятию новой информации. В этом состоянии мозг производит наибольшее количество эндорфинов и энкефалинов - «наркотиков» собственного производства.
  • Тета-волны: сигналы электроэнцефалограммы в диапазоне 4–8 Гц. В исследованиях на животных тета-волны записывают с помощью электродов, имплантированных в мозг. Для исследований людей электроды наклеивают на голову. Исследования на людях показывают, что тета-волны связаны с фазой быстрого сна и переходом от сна к пробуждению, а также со спокойным состоянием бодрствования.
  • Дельта-волны: переход в сонное или бессознательное состояние, электрическая активность мозга замедляется до частот ниже 4 Гц и имеет высокую амплитуду. Ассоциируется с глубоким сном.
  • Существуют также гамма-волны мозга, которые возникают при решении задач, требующих максимального внимания. Поскольку их типичная частота (40 Гц) лежит вне пределов рассматриваемого диапазона, ограничимся только упоминанием о них. Отметим только, что этот список далеко не исчерпывающий.

На этих эффектах основано горловое пение тибетских монахов и григорианское хоровое пение. За счёт практически неуловимых биений в исполнении, они провоцируют состояние восторженности вплоть до экстаза у благодарных слушателей. А ныне шарлатаны от медицины рекламируют их как панацею для снятия тревожных состояний психики, безо всякого медицинского контроля предлагая «успокоительную» музыку.

С точки зрения автора этой статьи - радиоинженера, компьютерщика, отъявленного атеиста и материалиста, человеческий мозг представляет собой высокоизбирательный приёмник со многими точками входа, к тому же подключённый к суперкомпьютеру со своими программами обработки входных сигналов, алгоритмы которых не совсем адекватно отражают объективную реальность.

Опыт по обнаружению инфразвука

Аппаратура

В нашем быту всегда присутствуют инфразвуки, основным генератором которых служат вентиляторы и воздуховоды систем кондиционирования. В принципе, для демонстрации инфразвуков достаточно вентилятора с малыми оборотами в качестве генератора инфразвука. В качестве приёмника инфразвука можно использовать динамик сабвуфера в инверсном режиме, подключённого к регистратору через предварительный усилитель с малым уровнем шумов и фильтром по срезу высших частот, поскольку все типичные акустические микрофоны слабо реагируют на инфразвук из-за малости их размеров. В качестве регистратора инфразвуков можно использовать цифровой или аналоговый осциллограф или устройство для записи звука. Результаты записи звука оконного кондиционера и напольного вентилятора показаны на графиках.

На этих двух графиках показан записанный звук напольного вентилятора. На нижнем графике показана спектрограмма (спектр частот - зависимость частоты от времени и зависимость амплитуды сигнала от частоты в конкретный момент времени). Справа от этого графика показано как цвет изменяется от черного к белому в зависимости от амплитуды сигнала. Амплитуда указана в децибелах относительно полной шкалы. 0 dBFS соответствует максимально возможному уровню сигнала для данной системы звукозаписи.

Похожие статьи