Как подключить элемент пельтье. Полупроводниковые холодильники пельтье

18.08.2019

Тема охлаждения компонентов ПК волнует многих пользователей. Большинство из них ограничиваются стандартными воздушными кулерами, отдельные энтузиасты собирают СВО. А что же дальше? Наверняка те, кто серьезно интересовался разгоном, слышали о модулях Пельтье (или термоэлектрических модулях, далее по тексту - ТЭМ; английский вариант - TEC, Thermoelectric Cooler) и их применении в качестве тепло-отводов для сильно-греющихся элементов компьютера.

Однако зачастую даже базовую информацию по правильному использованию этих удивительных устройств найти трудно, отсюда - многочисленные ошибки тех, кто впервые с ними сталкивается. К слову, производители систем охлаждения также экспериментируют с модулями Пельтье, порой представляя на суд публики весьма любопытные концепты. Как работают ТЭМ, действительно ли они так уж небходимы в СО компьютера, как самостоятельно собрать нехитрые кулеры и избежать простейших ошибок, достаточно характерных для новичков, - обо всем этом мы расскажем в данном материале.

Немного теории

Чем же на самом деле являются модули Пельтье? В базовом определении это термоэлектрические преобразователи, принцип действия которых основан на эффекте Пельтье, открытом в далеком 1834 году. Суть данного процесса заключается в возникновении разности температур в месте контакта материалов при протекании сквозь них электрического тока.

Мы не станем вдаваться в подробности истории открытия и научного обоснования специфики работы ТЭМ, поскольку этой теме можно посвятить целую диссертацию. Однако общие понятия упомянем.

Базовая схема устройства ТЭМ

Элементы Пельтье состоят из двух токопроводящих материалов (полупроводников) с разными уровнями энергии электронов в зоне проводимости. Физика протекания тока через подобные вещества такова, что для перехода электронов им требуется определенная подпитка, получаемая в момент прохождения тока через спайку. В таком случае возможно перемещение частиц в высокоэнергетическую зону проводимости от одного материала к другому. Место соприкосновения полупроводников в момент поглощения энергии охлаждается. Изменение направления тока или перемещение электронов из более энергетической зоны в менее насыщенную приводит к нагреву места контакта. Помимо этого, в модулях Пельтье наблюдается тепловой эффект, характерный для любых веществ, сквозь которые пропускают электрический ток. Вообще процессы, присущие ТЭМ, проявляются и в месте контакта обычных металлов, однако определить их без сложных приборов почти нереально. Поэтому основой для модулей служат полупроводники.

Элемент Пельтье состоит из одной или более пар полупроводниковых параллелепипедов разных типов (как в диодах или транзисторах, n- и p-типа). Современная индустрия для этих целей наиболее часто выбирает германид кремния и теллурид висмута. Полупроводники попарно соединяются металлическими перемычками из легкоплавких веществ. Последние выполняют роль термоконтактов и напрямую соприкасаются с керамической пластинкой или подставкой. Пары полупроводников соединены последовательно, разные виды проводимости контактируют друг с другом. С одной стороны модуля имеются лишь n->p-переходы, с другой - p->n. Течение тока вызывает охлаждение и нагревание противоположных групп контактов. Поэтому можно говорить о переносе током тепловой энергии с одной стороны модуля Пельтье на другую и, как следствие, возникновении разности температур на пластинке. Правильное применение модулей позволяет извлечь некоторые выгоды для промышленных, в том числе компьютерных СО. К слову, элементы могут быть использованы и в качестве электрогенераторов - основываясь на тех же принципах работы, физика протекающих внутри процессов объясняется эффектом Зеебека (условно говоря, тот же эффект Пельтье с «противоположным знаком»).

Плюсы и минусы применения ТЭМ

Зачастую к достоинствам модулей Пельтье относят:

  • сравнительно небольшие габариты;
  • возможность работы и на охлаждение, и на нагревание системы;
  • отсутствие движущихся частей, механических составляющих, подверженных износу.

В то же время ТЭМ обладают рядом недостатков, существенно сдерживающих их повсеместное практическое применение. Среди них следующие:

  • низкий КПД модулей;
  • необходимость наличия источни- ка тока для их работы;
  • большая потребляемая мощ- ность для достижения заметной разности температур и, как следствие, существенное тепло- выделение;
  • ограниченные габариты и полезные характеристики.

Однако, невзирая на негативные характеристики модулей Пельтье, они нашли свое применение в ряде продуктов. ТЭМ выгодны в первую очередь там, где энергетическая эффективность охладителя некритична, чем меньше - тем лучше. Элементы служат для охлаждения устройств с зарядовой связью в цифровых фотокамерах, позволяющих добиться заметного уменьшения теплового шума при длительных экспозициях. Модули Пельтье часто применяются для охлаждения и термостатирования диодных лазеров с целью стабилизации длины волны их излучения. Возможно использование нескольких ТЭМ, составленных последовательно в виде каскадов (холодная сторона одного охлаждает горячую другого), благодаря чему реально достичь очень низких температур для устройств, обладающих малым тепловыделением. Элементы Пельтье - основа компактных холодильников, в первую очередь автомобильных. Их применяют и в миниатюрных сувенирах из области компьютерной периферии, и в производительных СО в качестве основных или вспомогательных компонентов. Именно о последнем варианте мы и поговорим более подробно.

Модули Пельтье в ПК: практика

При переходе к практической реализации СО на базе ТЭМ нужно сделать несколько оговорок, которые позволят правильно подобрать параметры итоговых конструкций. Нередко эксперименты новичков заканчиваются плачевно: либо температуры на «холодной» стороне модулей во время работы получаются выше, чем на горячей, либо системы демонстрируют откровенно слабые результаты даже по сравнению со стоковыми кулерами без элементов Пельтье. Причины зачастую кроются в неправильном расчете (или построении СО наугад). Дело в том, что любой ТЭМ имеет свои штатные характеристики, обычно выделяют два значения (рассмотрим их на примере модуля ТЕС1-12709 с заявленной максимальной мощностью 136 Вт), например, пишут, что ΔTmax Qcmax=0(°С) 66 и Qcmax ΔTmax=0(W) 89.2. Перефразируя данное выражение: модуль способен обеспечить максимальный перепад температур между сторонами, равный 89,2 ºС при отсутствии тепловой нагрузки и 0 ºС при наличии таковой на «холодную» сторону 66 Вт. Таким образом, полезная нагрузка модуля лежит в пределах от 0 до 66 Вт, в идеале - чем меньше - тем лучше и тем большую разницу температур обеспечит ТЭМ. В то же время любой модуль имеет другую характеристику - максимальную потребляемую мощность, которую тоже нужно отвести от него с помощью системы охлаждения. Для рассматриваемого ТЕС1-12709 Umax (В) равно 15.2 В, I max- 9 А. Следовательно, при указанных параметрах имеем энергопотребление 136,8 Вт, что, согласитесь, немало.

Система охлаждения должна успешно отводить тепло непосредственно от модуля (обеспечивая максимально возможную низкую температуру «горячей» стороны) и компонентов ПК. Примерный КПД такой системы можете вычислить сами - при полезной составляющей в 150-200 Вт (приблизительно столько выделяют современные разогнанные CPU) для получения хоть каких-то видимых результатов придется затратить не менее 600-800 Вт электрической мощности и отвести не менее киловатта тепловой. Именно поэтому производительные СО на базе модулей Пельтье не получили широкого распространения. Впрочем, прецеденты сравнительно успешной реализации гибридных кулеров известны, а мы попытаемся создать свои - маломощный и оптимальный. Чтобы избежать ограничений в виде недостаточного теплоотвода, на «горячую» сторону ТЭМ поместим производительные водоблоки, подключенные в контур СВО. Кстати, модули Пельтье нельзя устанавливать непосредственно на ядро/теплораспределительную крышку чипов - тонкая керамическая подкладка не способна поддерживать эффективную теплопередачу ко всем полупроводниковым парам, составляющим ТЭМ. Для этой цели лучше всего подойдет промежуточный «буфер» - медная пластинка толщиной 5-7 мм, полностью закрывающая поверхность модуля. К слову, оптимальный режим эксплуатации элементов Пельтье обеспечивается при пониженных напряжении и потребляемом токе. Приближение этих параметров к максимальным существенно повышает тепловую отдачу пластины, однако не так ощутимо - полезную составляющую.

Мы решили по максимуму охладить графический чип видеокарты Radeon HD 4350 и CPU Core 2 Duo E8500, попытавшись разогнать данные компоненты. Для отвода тепла от GPU использовались уже упомянутый ТЕС1-12709 (максимальная потребляемая мощность - 136 Вт) и самодельный медный водоблок, в паре с процессором работали ТЕС1-12726 (395 Вт) и один из лучших промышленных водоблоков Swiftech Apogee GT. Модули подключались напрямую к компьютерному БП в 12-вольтовую цепь. Применение киловаттного be quiet! Dark Power PRO BQT P6PRO-1000W давало все основания не переживать за недостаток мощности для питания ПК и элементов системы охлаждения. В контуре СВО трудились два «двойных» радиатора под 120-миллиметровые вентиляторы и помпа Hydor Seltz L30 (производительностью 1200 л/ч на холостом ходу).

В случае охлаждения компонентов до температур ниже комнатных (в частности, ниже «точки росы») стоит ожидать появления конденсата на переохлажденных поверхностях. Понятно, что вода в таком виде является главным врагом пользователя, и ее выделение необходимо предупредить. Делается это путем тщательной теплоизоляции любых поверхностей (частей РСВ, околосокетного пространства с обеих сторон платы, собственно ТЭМ, теплораспределителя процессора и GPU) материалами, не пропускающими воздух. Лучше всего для этих целей подходит стандартный теплоизоляционный материал для труб водоснабжения (на основании вспененного каучука), специальные замазки, отдельные виды поролона, поставляемого в комплекте с компонентами ПК, на худой конец термопаста и бумажные салфетки. В последнем случае допустима эксплуатация ПК лишь для проведения кратковременных бенчинг-сессий. Теплоизоляция обеспечит повышение общего КПД установки.

Итоговые температуры, полученные в различных режимах работы компонентов, их сравнение с показателями, обеспечиваемыми исключительно системой водяного охлаждения, приведены в диаграмме. Как видите, модули Пельтье позволили понизить температуру компонентов ощутимо ниже комнатной (в зависимости от загрузки). В таких условиях не составило особого труда разогнать процессор до частоты 4,3 ГГц с повышением напряжения питания до 1,35 В, а GPU заставить функционировать на 800 МГц (штатное значение - 600 МГц). В то же время мы получили ощутимый нагрев СО тестового стенда (в корпусе ситуация усугубилась бы более существенно) и резкий рост уровня энергопотребления ПК (собственно, вся конструкция потребляет больше, чем отдельно взятый компьютер на базе компонентов тестового стенда). Подобное решение однозначно пригодится в зимнюю пору, однако летом вряд ли порадует большинство пользователей.

Готовы ли вы на такие жертвы ради достижения сравнительно низких температур на компонентах ПК? Решайте сами, но помните о базовых советах, приведенных в этой части материала, - они помогут правильно применить модули Пельтье на практике. Использование систем охлаждения на основе ТЭМ разумно и оправданно в случае с маломощными компонентами (чипсетами материнских плат, GPU низко- и среднеуровневых видеокарт). Не забывайте и о теплоизоляции охлаждаемых элементов - ведь конденсат является главным врагом системы во время экспериментов с ТЭМ.

Выводы

Подытоживая вышесказанное относительно особенностей работы модулей Пельтье и целесообразности их практического применения, повторимся: ТЭМ имеют упомянутые преимущества и недостатки, которые не позволяют дать однозначного ответа на вопрос: «А стоит ли…?» Их использование оправданно для отвода незначительных тепловых нагрузок (именно к таковым относятся компактные холодильники, термостатированные лазеры; СО для маломощных компонентов ПК - чипсетов и отдельных GPU).

На базе элементов Пельтье можно создавать различные самодельные охлаждающие и нагревающие устройства, существуют примеры успешной реализации маломощных генераторов. Но прежде чем заниматься изготовлением подобных конструкций, ознакомьтесь все же с теоретической составляющей - предварительная подготовка избавит от ошибок и сэкономит время в момент практического воплощения проектов.

Говорить о применении модулей Пельтье в ПК следует достаточно осторожно: прочитав о получении низких температур на охлаждаемых элементах, новички часто забывают о значительной потребляемой и выделяемой мощности подобных СО, не учитывают параметры и «запас прочности» отдельно взятой конструкции. ТЭМ заинтересуют в первую очередь оверклокеров, для которых любой выигрышный градус и каждый мегагерц важны. Рассматриваемые элементы - промежуточное звено между классическими системами водяного охлаждения и чиллерами или фреонками, работающими по принципу фазового перехода. Впрочем, применение ТЭМ отнюдь не назовешь простым, поэтому прежде чем приступать к серьезным экспериментам, тщательно взвесьте все «за» и «против».

Готовые СО на базе ТЭМ

Модули Пельтье используются производителями систем охлаждения для ПК в качестве основных и вспомогательных компонентов кулеров. Порой из этого получаются эффектные действенные устройства, иногда все выходит не так гладко, как изначально задумывалось. Мы решили вспомнить об основных СО, применяющих ТЭМ, которым прочили роль революционеров своего времени.

Один из первых кулеров с элементом Пельтье, наделавший сравнительно много шума в сфере охлаждения CPU (2003 год). Однако невысокий запас прочности, значительное по тем временам энергопотребление, громоздкость конструкции и шумность в работе не позволили ему закрепиться на рынке. Появись эта модель на год-два раньше - возможно, все обернулось бы иначе.

Суперкулер для видеокарт, построенный по тому же принципу, что и Titan Amanda: одна половина радиатора работает непосредственно на отвод тепла от GPU, другая охлаждает горячую сторону ТЭМ. В свое время оказался одним из лучших во время тестирования СО для графических адаптеров. (Мы писали о нем в «Домашнем ПК» в 2007 году.)

Самое мощное современное решение для охлаждения CPU, использующее элемент Пельтье. Представляет собой производительный водоблок, отводящий тепло от ТЭМ (около 400 Вт потребляемой электрической мощности), который, в свою очередь, создает оптимальный температурный режим процессора. Эта система способна обеспечить функционирование Core i7 на частоте порядка 4 ГГц при температуре около 0 ºС (режим простоя) и 20-30 ºС в режиме максимальной нагрузки.

Аналогично процессорному решению представляет собой высокопроизводительный водоблок для графического адаптера, дополненный модулем Пельтье. В зависимости от TDP видеочипа способно удерживать его температуру на уровне комнатной или ниже.

Элементы Пельтье этой СО охлаждают часть тепловых трубок. Подход достаточно интересный и правильный, применение модулей позволяет сбить пару-тройку градусов на процессоре. Однако экономическая целесообразность такого хода - под большим вопросом, ввиду того что V10 при существенной цене не в состоянии обогнать лучшие воздушные суперкулеры. Скорее всего, виноваты особенности конструкции и недостаточная мощность ТЭМ.

Серия достаточно современных процессорных суперкулеров на тепловых трубках, использующих термоэлектрический модуль (2007-2008 гг). Часть радиатора отводила тепло непосредственно от ТЭМ, тогда как другая половина охлаждала греющийся компонент. Подобный подход к проектированию позволяет избежать резкой перегрузки СО вследствие превышения лимитов тепловыделения модуля Пельтье. Кулеры линейки Amanda демонстрировали отличные результаты с процессорами, обладающими сравнительно невысоким TDP.

XtremeLabs.org MONSTER T.E.C. Project

Владельцев СВО и тех, кто собирается обзавестись жидкостными системами, могут заинтересовать так называемые чиллеры на базе элементов Пельтье. В зависимости от типа подключения ТЭМ в контур они позволят немного понизить температуру теплоносителя, а при создании мощных СО даже обеспечат температуру хладагента, близкую к нулевой.

Известный нашим читателям энтузиаст Wehr-Wolf давно интересовался затронутой темой эффективного охлаждения компонентов ПК и их дальнейшего экстремального разгона. Начиналось все в далеком 2005 году с теоретических набросков, рассуждений и одного из главных компонентов системы - массивного «бутерброда», состоящего из больших водоблоков. Однако заброшенные на длительное время задумки удалось реализовать лишь совместно с автором данного материала, в середине этого года запустив энтузиастский проект XtremeLabs.org MONSTER T.E.C. Project.

Первый пуск ТЭМ-чиллера в полевых условиях

Принцип работы системы достаточно прост: модули Пельтье (8 ТЭМ с максимальной потребляемой мощностью 136 Вт каждый) охлаждают с двух сторон большой медный водоблок, а сами, в свою очередь, охлаждаются аналогичными водоблоками. «Холодный» и «горячий» контуры СВО полностью разделены между собой. Для питания такого количества ТЭМ в процессе первого запуска использовались два компьютерных БП с общей заявленной мощностью 1200 Вт, в качестве охладителя «горячего» контура выступала СЖО с двумя радиаторами под два 120-миллиметровых вентилятора каждый, прокачиваемая мощной помпой. Однако даже такой СВО оказалось недостаточно, и радиаторы пришлось продувать высокопроизводительными промышленными вентиляторами. В «холодный» контур были подключены помпа Hydor L20 II и водоблок Swiftech Apogee GT, охладителем выступал большой водоблок, контактирующий с «холодной» стороной ТЭМ. В результате первого эксперимента удалось добиться температуры воды в контуре порядке 5-7 ºС, при этом в качестве нагрузки для системы использовался процессор Core i7 965 Extreme Edition, разогнанный до частоты 4 ГГц.

С одной стороны, полученные результаты действительно впечатляют - подобные температуры при таких нагрузках способны обеспечить разве что чиллеры на основе систем фазового перехода, с другой - а стоит ли овчинка выделки? Чудовищная потребляемая мощность системы, громоздкая СО «горячего» контура, высокая общая стоимость оправдываются лишь концептуальным статусом XtremeLabs.org MONSTER T.E.C. Project, на данный момент находящимся в стадии доработки.

Элементом Пельтье называют термопару, иначе говоря, устройство изменяющее температуру и работающее в соответствии с одноимённым принципом Пельтье, то есть, демонстрируя разность температур, возникающую с момента подачи электроэнергии. В англоязычных источниках фигурирует в роли термоэлектрического охладителя. Обратный данному эффекту носит название эффекта Зеебека.

Принцип работы устройства

Элемент Пельтье функционирует благодаря взаимодействию одного токопроводящего материала с другим, отличным по энергетическому уровню электронов в проводящей области. Прохождение по такому каналу связи наделяет электрон большим энергетическим запасом, что после позволяет ему перейти в проводящую область с более высоким энергетическим уровнем. Поглощение этой энергии приводит к понижению температуры в точке соединения проводников. Когда же происходит обратное движение тока, контакт нагревает, что находит выражение в виде стандартного теплового эффекта.

При условии, что по одной стороне подключён теплоотвод, в момент эксплуатации радиаторной системы вторая сторона даёт сильное охлаждения (до десятков градусов ниже температурного уровня окружающей среды). Между величиной тока и степенью охлаждения наблюдается прямая зависимость. При смене полярности также меняются положениями стороны нагрева и охлаждения.

Когда элемент Пельтье взаимодействует с деталями, выполненными из металла, то оказываемый им эффект уменьшается во много раз, и температурный контраст становится мало заметен под действием разнообразных явлений связанных с теплопроводностью цепи. По этой причине практическое применение подразумевает использование сразу двух полупроводников.

Сочетать термопары можно в любых количествах в пределах сотни, что делает возможным создание элемента Пельтье любой холодильной мощности.

Термоэлектрический модуль

Особенно явно эффект Пельтье можно наблюдать при использовании p- и n- полупроводников. В соответствии с направлением электротока при переходе через p-n-соединения происходит поглощение, либо выделение энергии.

Именно такая конструкция применяется в ТЭМ (термоэлектрическом модуле). Единичный элемент термоэлектрического модуля – это , конструкция которой представляет собой объединение p- и n- проводника. Если последовательно соединить несколько подобных элементов, то поглощение теплоты будет происходить на n-p-контакте, а выделение на p-n-контакте. В результате возникает уже описанная ранее ситуация с разностью температур. Согласно общепринятому принципу горячей является та сторона, к которой подведены провода и на схеме она всегда расположена внизу.

Рис.1: Термоэлектрический модуль Пельтье

В ТЭМ термопары фиксируются между парой пластин из керамических материалов. Каждая из веток спаивается с медными проводящими площадками (шинками), которые в свою очередь скрепляются с теплопроводящим материалом, например, оксидом алюминия.

Определять уровень рабочего напряжения модуля следует, исходя из количества составных элементов. Наиболее распространённым вариантом является 127-парные модульные конструкции с наибольшим уровнем напряжения в 16 Вольт. Но для их работы обычно достаточно 75% от этого значения. Мало того именно эта цифра является наиболее подходящей, поскольку отвечает и требованиям к рабочим условиям, и является достаточно экономичной. При повышении напряжения мощность почти не увеличится, а вот энергопотребление ощутимо возрастёт.

Применение на практике

На сегодняшний день применение элемента Пельте особенно актуально в устройствах следующих типов:

  • Холодильники;
  • Кондиционеры;
  • Автомобильные охладители;
  • Кулеры для воды;
  • Видеокарты для персонального компьютера.

В целом, можно сказать, что элемент Пельтье стал неотъемлемой частью разнообразных холодильных и кондиционирующих систем. Использование этого устройства является отличным подходом к решению проблемы перегрева оборудования. В настоящее время элемент Пельтье также может быть использован для охлаждения акустической и звуковой системы, поскольку его работа является совершенно бесшумной и идеально подходит для таких целей.

Есть несколько качеств элемента Пельтье, которые пользуются большим спросом:

  • Они обеспечивают достаточно мощную теплоотдачу;
  • Имеют весьма скромные размеры, что позволяет использовать их практически в любых устройствах;
  • Способны к сохранению одного и того же температурного режима на протяжении продолжительного срока (благодаря радиаторам);
  • Отличаются изрядной долговечность, поскольку укомплектованы из ряда цельных недвижимых компонентов.

Самая простая составляющая элемента выглядит как пара медных проводников, к которым подключены контакты, соединительные провода, оснащённые изолирующим элементом (для его изготовления используется нержавеющая сталь или керамика).

Как самостоятельно изготовить элемент Пельтье

Простота конструкции этого устройства располагает к тому, чтобы изготовить его самостоятельно. Тем более, что сфера его практического применения практически не ограничена: холодильники, кондиционеры и другая техника.

Предварительно следует заготовить пару пластин из металла, а также понадобится проводка с контактами. Прежде всего, запаситесь проводниками, которые будут установлены рядом с основанием устройства. Для этих целей лучше всего подойдут PP-проводники.

Далее, не забудьте, что на выходе должны быть установлены полупроводники, которые будут подавать тепло к верхней пластине. Для монтажа элемента потребуется паяльник. На финальном этапе понадобится подключить пару проводов. Один локализуется около основания и надёжно крепится рядом с крайним проводником. Значимо, чтобы не было никаких соприкосновений с пластиной.

Место крепления второго проводника располагается рядом с верхней частью и закрепляется аналогичным образом – у крайнего проводника.

Для проверки элемента на предмет работоспособности нужно будет воспользоваться тестером. Прибор подсоединяется к проводам и производится замер вольтажа. Стандартный показатель отклонения напряжения достигает примерно 23 Вольт.

Мощность элемента Пельте находится в прямой зависимости от его габаритов, это следует учитывать при самостоятельной сборке или монтаже. Установка недостаточно мощного элемента не предотвратит поломку техники, а лишь отсрочит её. В то же время избыточная мощность вызывает падение уровня температуры до критического уровня, когда влага, находящаяся в воздухе может начать конденсировать и оседать на поверхности устройств, что особенно опасно для электронных приборов.

Помимо этого, другая сторона модуля является источником достаточно большого количества тепла, поэтому для обеспечения его безопасной работы требуется вентилятор довольно большой мощности.

Как изготовить генератор на основе элемента Пельтье?

Генераторы на основе элемента Пельтье особенно интересуют людей, которые ввиду достаточно продолжительной отрезанности от цивилизации нуждаются в простом и доступном источнике энергии. Также они широко применяются при критическом перегреве деталей персонального компьютера.

Рис.2: Генератор на основе элемента Пельтье.

Элементы Пельтье имеют достаточно интересный принцип действия, но помимо этого обладают одной любопытной особенностью: если к ним прилагается разность температур, то они продуцируют электричество. Один из вариантов генератора на базе этого устройства предполагает следующую конструкцию:

По двум трубкам (одна для входа, другая для выхода) движется пар, который направляется в полость теплообменника, сконструированный из пластины (материал: алюминий), имеющей толщину 1 см.

К каждому отверстию теплообменника подведено соединение с одним каналом. Габариты теплообменника точно дублируют габариты элементов Пельтье. Два элемента фиксируются на двух сторонах теплообменника с помощью четырёх винтов (по 2 на каждую сторону). В результате, благодаря отверстиям и канальцам теплообменника формируется полноценная система сообщающихся отделов, через которые проходит пар. Двигаясь вперёд, пар входит в камеру по одной трубке и выходит через другую, двигаясь к следующей камере. Транслируемое паром тепло достаётся элементам Пельтье, когда пар непосредственно соприкасается с их поверхностью, а также с материалом теплообменника.

Чтобы вплотную прижать элементы к корпусу теплообменника, а также для организации отвода тепловой энергии на «холодную» сторону применяются пластины из алюминия на 0,5 см в толщину. На последнем этапе вся конструкция герметизируется силиконовыми герметиками.

После этого через трубки пускают пар, а конструкция погружается в холодную воду. Вся система целиком начинает работать. Электрический ток будет образовываться до тех пор, пока разница между температурой «горячей» и «холодной» сторон не сократится до минимума.

Есть и более элементарный метод.

Элемент Пельтье выводами подсоединённый к зарядному телефонному кабелю закрепляется на алюминиевом радиаторе (который будет контактировать с «холодной» стороной) с помощь герметика. Сверху на устройство ставится любой горячий предмет, например, кружка с горячим чаем. Через пару секунд телефон можно ставить на зарядку. Зарядка будет продолжаться, пока чай не остынет.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на , буду рад если вы найдете на моем еще что-нибудь полезное.

Ну чтож, все графики начерчены, все таблицы заполнены, теперь можно и помечтать. В целом если прикидывать энергопотребление в походе по максимуму, то получается следующее:
GPS-навигатор - 0,3 Вт х 10 ч = 3 Вт*ч в день;
фотоаппарат (зеркалка Canon) - аккумулятор 8 Вт*ч на 4 дня = 2 Вт*ч в день;
видеокамера (видеорегистратор для запечатления интересных моментов поездки, около 1 часа видео в день) - 1,6 Вт*ч в день;
сотовый телефон - около 0,2 Вт*ч в день;
светодиодный фонарик для подсвечивания стоянки вечером - 2 Вт*ч в день.
Итого получаем: 3 + 2 + 1,6 + 0,2 + 2 = 8,8 Вт*ч в сутки. С учётом потерь при зарядке аккумуляторов этих устройств и непредвиденные траты можно с лёгкостью округлить эту цифру до 10 Вт*ч в сутки, что приблизительно равно трём NiMH аккумуляторам формфактора АА (по 3,2 Вт*ч). Будем считать, что именно это количество электроэнергии позволяет комфортно путешествовать по ранее запланированному маршруту не ограничивая свои творческие позывы. Этот расчёт более-менее верен для одиночной вылазки или группы из двух человек. Если народу больше, то тут на каждого добавляется дополнительный потребитель, будь то сотовый или ещё один фотоаппарат. Я думаю что на каждого "лишнего" участника можно смело прибавлять по 1 Вт*ч, то есть для группы из 6-ти человек комфортный уровень энергопотребления составит 14 Вт*ч или около 4,5 аккумулятора АА. Предположим что поход длиться 10 дней, то для группы из 2-х человек понадобится 100 Вт*ч энергии, это 31 NiMH аккумулятор общей массой 31 х 31,5 = 976,5 г. То есть почти 1 кг аккумуляторов. Если брать щелочные батарейки, то самые лучшие отдают 2,2 Вт*ч и их потребуется 45 штук. Массу их не знаю, но даже если они по 25 г, то в сумме уже больше килограмма набирается. Для группы из 6-ти человек общее количество электроэнергии составляет 140 Вт*ч, это почти 44 аккумулятора массой 1386 г или 64 батарейки ещё большей массой. Если брать с собой LiPo аккумуляторы, какие используют моделисты, то для двух человек это будет аккумулятор массой 100 Вт*ч ÷ 160 Вт*ч/кг = 0,625 кг или 625 г. Для группы из 6-ти человек масса LiPo аккумулятора составит 875 г.
Теперь прикинем как обстоят дела с термогенератором. Допустим у нас модуль (или модули) ТЕС1-12709, греем его не выше 150 °С, охлаждаем в ручье с температурой 15 °С, то есть на холодной стороне будет 20 °С, перепад температур 150 - 20 = 130 °С. Для такого значения разности температур у меня нет показателя эффективности, придётся считать. Берём два максимальных значения на графике зависимости эффективности от тока для ТЕС1-12709, например 13,6 мВт/°С для усреднённой разности температур 71 °С и 15,7 мВт/°С для 87 °С и рассчитываем на какую величину увеличилась эффективность при повышении разности температур на 87 - 71 = 16 °С. Получается на 2,1 мВт/°С. А дальше по пропорции: если увеличение разности в 16 °С привело к увеличению эффективности на 2,1 мВт/°С, то увеличение разности на 130 - 87 = 43 °С приведёт к увеличению эффективности на (43 х 2,1) ÷ 16 = 5,6 мВт/°С. Значит эффективность при разности температур в 130 °С будет равна 15,7 + 5,6 = 21,3 мВт/°С. В итоге получаем 21,3 х 130 = 2769 мВт или 2,8 Вт. Это довольно близкое к реальности значение если судить по тому, что в некоторых видеоэкспериментах два модуля выдавали 4...6 Вт. Чтобы с помощью одного модуля получить 10 Вт*ч энергии, надо чтобы генератор работал 10 ÷ 2,8 = 3,57 ч, а для 14 Вт*ч - 5 часов. То есть если использовать термогенератор состоящий из 2-х элементов Пельтье, то выработка электроэнергии даже для большой группы не занимает очень много времени.
Единственная серьёзная проблема, возникающая при производстве электричества в походе этим методом - это рассеяние тепла на холодной стороне. Самый лучший и оптимальный - водяное охлаждение, так как вода имеет большую теплоёмкость. В этом плане водным туристам повезло больше, чем велосипедистам: у них способ передвижения связан именно с водой и если продумать конструкцию генератора (очень странно, почему она до сих пор не продумана и не реализована в промышленных объёмах), то выработка электроэнергии у них может происходить во время движения. Генератор частично погружён в воду, частично плавает на поверхности. В печь по мере расходования подгружается топливо, снаружи это всё охлаждается водой. Топливо собирается и готовиться на привале.
Если заморачиваться с собиранием дров и сосновых шишек не хочется, то можно подумать над конструкцией газовой печи. Тут стоит немного посчитать. Итак, имеем:
баллон сжиженного газа для газовых горелок с топливом массой 450 г.;
состав: изобутан - 72%, пропан - 22%, бутан - 6%, в пересчёте на массу это 324 г, 99 г и 27 г соответственно;
теплоты сгорания для этих газов равны соответственно 49,22 МДж/кг, 48,34 Мдж/кг и 49,34 МДж/кг.
После умножения и сложения имеем 22,07 МДж в одном баллоне сжиженного газа. Принимаем КПД нашего генератора равное 1%, следовательно получаем в качестве электроэнергии 220 кДж, что составляет 61,3 Вт*ч. С чем можно сравнить? Ну например с 19-тью NiMH аккумуляторами АА. Не густо и довольно накладно, газ не дешёв.
Раз использовать газ дорого, то можно придумать что-то с использованием жидкого топлива, например бензина. Я немного порылся в интернете на предмет дешёвого катализатора для каталитических горелок, но кроме оксида хрома (VI), полученного из бихромата аммония ничего не нашёл. Да и с ним не всё так гладко, но при желании, путём некоторого количества экспериментов можно и тут добиться стабильных положительных результатов. В каталитических грелках китайского производства скорее всего используются элементы платиновой группы в микроколичествах. Вот бы катализатор как в этой грелке, но большего размера для элементов Пельтье. Получился бы компактный и лёгкий генератор. Теплота сгорания бензина 44,5 МДж/кг, плотность 0,74 кг/л, с одного литра бензина имеем 33 МДж энергии, при 1%-ном КПД это 330 кДж или 91,6 Вт*ч электроэнергии (28 аккумуляторов АА). Более бюджетный вариант, но всё таки собирать и заготавливать имеющееся в природе бесплатное топливо естественно выгоднее, и у него нет одной очень неприятной особенности, присущей тем запасам, которые покупаются в магазине - оно не заканчивается в самый неподходящий момент.

Многие слышали про «магические» элементы Пельтье - при прохождении тока через них одна сторона охлаждается, а другая - нагревается. Это работает и в обратную сторону - если одну сторону нагревать, а другую охлаждать - вырабатывается электричество. Эффект Пельтье известен с 1834 года, но и по сей день нас не перестают радовать инновационные продукты на его основе (нужно только помнить, что при генерации электричества, как и у солнечных батарей - есть точка максимальной мощности, и если работать далеко от неё - КПД генерации сильно снижается).

В последнее время китайцы поднажали, и заполонили интернеты своими относительно дешевыми модулями , так что эксперименты с ними уже не отнимают слишком много денег. Китайцы обещают максимальную разницу температуры между горячей и холодной стороной в 60-67 градусов. Хммм… А что если мы возьмем 5 элементов, подключим последовательно, тогда у нас должно получиться 20С-67*5 = -315 градусов! Но что-то мне подсказывает, что все не так просто…

Краткая теория

Классические «китайские» элементы Пельтье - это 127 элементов, включенных последовательно, и припаянных к керамической «печатной плате» из Al2O3. Соответственно, если рабочее напряжение 12В - то на каждый элемент приходится всего по 94мВ. Бывают элементы и с другим количеством последовательных элементов, и соответственно другим напряжением (например 5В).

Нужно помнить, что элемент Пельтье - это не резистор, его сопротивление нелинейно, так что если мы прикладываем 12В - у нас может не получится 6 ампер (для 6-и амперного элемента) - ток может изменятся в зависимости от температуры (но не слишком сильно). Также при 5В (т.е. меньше номинала) ток будет не 2.5А, а меньше.

Кроме того, количество перенесенного тепла сильно зависит от разницы температуры между поверхностями. При разнице 60-67С - перенос тепла стремится к 0, а при нулевой разнице - 51 Ватт для 12*6 = 72-х Ваттного элемента. Очевидно, уже это не позволяет так просто соединять элементы в серию - нужно чтобы каждый следующий был по размерам меньше предыдущего, иначе самый холодный элемент будет пытаться отдать больше тепла (72Вт), чем элемент следующей ступени может пропустить через себя при желаемой разнице температур (1-51Вт).

Элементы пельтье собираются легкоплавким припоем с температурой плавления 138С - так что если элемент случайно останется без охлаждения и перегреется - то достаточно будет отпаяться одному из 127*2 контактов чтобы выкинуть элемент на свалку. Ну и элементы очень хрупкие - как керамика, так и сами охлаждающие элементы - я нечаянно разодрал 2 элемента «вдоль» из-за присохшей намертво термопасты:

Пробуем



Итак, маленький элемент - 5В*2А, большой - 12*9А. Кулер на тепловых трубках, температура комнатная. Результат: -19 градусов. Странно… 20-67-67 = -114, а получились жалкие -19…

Идея - вынести все на морозный воздух, но есть проблема - кулер на тепловых трубках хорошо охлаждает только если температура «горячей» и «холодной» стороны кулера лежит по разные стороны фазового перехода газ-жидкость наполнителя трубки. В нашем случае это означает, что кулер в принципе не способен охладить что-либо ниже +20С (т.к. ниже работают только тонкие стенки тепловых трубок). Придется возвращаться к истокам - к цельно-медной системе охлаждения. А чтобы ограниченная производительность кулера не сказывалась на измерениях - добавим килограммовую медную пластину - тепловой аккумулятор.


Результат шокирующий - те же -19 как с одной, так и с двумя стадиями. Температура окружающего воздуха - -10. Т.е. с нулевой нагрузкой мы еле-еле выжали жалкие 9 градусов разницы.

Выкатываем тяжелую артиллерию

Оказалось, неподалеку от меня хладокомбинат #7, и я решил к ним заглянуть с картонной коробкой. Вернулся с 5-ю килограммами сухого льда (температура сублимации -78С). Опускаем медную конструкцию туда - подключаем ток - на 12В температура моментально начинает расти, при 5В - падает на 1 градус на секунду, и дальше быстро растет. Все надежды разбиты…

Выводы и видео на сладкое

Эффективность обычных китайских элементов Пельтье быстро падает при температуре ниже нуля. И если охладить банку колы еще можно с видимой эффективностью, то температуры ниже -20 добиться не удается. И проблема не в конкретных элементах - я пробовал элементы разных моделей от 3-х разных продавцов - поведение одно и то же. Похоже на криогенные стадии нужны элементы из других материалов (и возможно для каждой стадии нужен свой материал элемента).

Ну а с оставшимся сухим льдом можно поступить следующим образом:

PS. А если смешать сухой лед с изопропиловым спиртом - получится жидкий азот для «бедных» - в нем так же весело замораживаются и разбиваются цветы и проч. Вот только из-за того что спирт не кипит при контакте с кожей - получить обморожение существенно легче.

Что такое элемент Пельтье – электро-, термопреобразователь, который состоит из нескольких пар (в отдельных случаях одной) полупроводников различных по свойству типов («n» и «р»), последние соединяются перемычками из металла – в основном это - медь. На практике данное устройство создает температурную разность на разных концах поверхности при протекании энергии электрического тока.

Одним из наиболее простейших вариантов данного устройства Пельтье в практическом использовании является модификация ТЕС1-12706, изображенная на рисунке 1.

В корне принципа работы положен термоэлектрический эффект Пельтье. Другими словами - при протекании и под действием электрического тока создается разница температур в местах контактов термопар - полупроводников «n» и «р» - типа.

Элементы Пельтье – доволи таки «чувствительные устройства» к перегреву и высоким температурам. К ним предъявляются высокие требования к эксплуатации, при невыполнении которых, устройство быстро выходит из строя. Очень важно отводить тепло, для этой цели необходимо устанавливать радиатор или вентилятор, в противном случае не достигается температура холодной стороны относительно горячей.

Как работает элемент Пельтье

Представим, что электрический ток проходит через термическую пару, как показано на рисунке 2.

В этом случае происходит процесс поглощения энергии тепла на полупроводниковом контакте n - p и процесс выделения тепловой энергии на p - n контакте. В итоге часть термопары полупроводника, который сопрягается с n - p контактом, будет охлаждаться, а вторая часть с другой противоположной стороны - соответственно, нагреваться.

В том случае, когда поменяем полярность по току, то происходит процессы нагревания и охлаждения, соответственно, также поменяются.

Обратный процесс эффекта Пельтье приводит к тому, что при подводе теплоты к одной стороне термопреобразователя получают энергию электрического тока.

Конечно на практике, применение одной термопары не хватает для полного отвода тепловой энергии, поэтому в преобразователе применяют большое количество. Электрическая цепь собирается из термопар последовательно. В то же время в конструкции термопреобразовательных элементов: нагревающие термопары располагаются на другой стороне относительно охлаждающих.

Устройство элемента Пельтье очень простое. Термические пары конструируются между двумя платинами, выполненными из керамики. Соединение термопар производится медными проводниками (шинами). Количество термопар определяется назначением термопреобразователя, его мощности и места установки и может применяться от одной до нескольких сотен штук.

Основными элементами термопреобразователя являются: полупроводники р - типа, n - типа, керамические пластины, медные сопряжения - проводники; контакты подвода электрического тока «плюс» и «минус». Для элемента Пельтье разница по температурам разных краев термопар достигает до 70 градусов по Цельсию. Чтобы увеличить данную разницу требуется увеличить каскад последовательного включения термопар.

Основные эксплуатационные характеристики элемента Пельтье

Данное устройство в целом идеально работает в тех случаях, когда хорошо и надежно контактируют термопары с охладительным устройством, будь то радиатор охлаждения или вентилятор охлаждения со змеевиком, то есть – хороший теплосъем.

Модули Пельтье, как их часто называют, очень чувствительны к перепадам по току и напряжению (не более 5 %). Под действием высоких температур (наиболее критическая для элементов до 150 градусов) эффективность снижается во много раз (до 40 %) и модуль очень быстро ломается.

Как правило, в схему работы полупроводниковых элементов недопустимым условием является приспособление релейных устройств: ограничивающих мощность или регулирующих. Это приводит к деградации кристаллических составляющих и к неисправности в скором времени элемента.

Частое включение и выключение устройств также негативно влияет на работу и срок эксплуатации, и его долговечность функционирования. Согласно законов физики - любой нагрев материала приводит к его тепловому расширению, а охлаждение - к сжатию. Соответственно, особенно слабыми местами в полупроводниковых элементах являются «паечные», где из-за механического движения возможно появление дефектов в виде микротрещин и в конце концов к разрыву цепи.

Коэффициент теплопроводности термических пар элемента Пельтье достаточно высок, что с одной стороны является достоинством, а с другой стороны ограничивает срок эксплуатации и расчетное число циклов «стоп-старт-стоп».

Достоинства и недостатки модуля Пельтье

Сравнивать устройство Пельтье с другими охладительными установками с различным приводом в принципе невозможно и нецелесообразно, так как в первом случае имеют полупроводниковые материалы в виде кристаллов, а во втором случае рабочее тело - газ или жидкость (к примеру: компрессорный холодильник). В различных областях применяются и те и другие устройства.

К преимуществам элементов Пельтье можно отнести:

  • полное отсутствие механики движения и вращающихся частей, а также жидкостей, газов;
  • абсолютно нет шума работы устройств;
  • сравнительно малые размеры;
  • двухфункциональность: нагревание и охлаждение при изменении полярности;

К недостаткам можно отнести:

  • относительно низкий коэффициент полезного действия;
  • требование постоянного источника энергии, питания;
  • число пусков и остановов ограничено;
  • плавность отключения и включения термоэлектрических устройств;
  • контроль нагрева с одной стороны или охлаждения с другой с помощью вентилятора.

Опрос: Понятно ли что такое и как устроен Элемент Пельтье

Похожие статьи