Зарядное устройство для никель цинковых аккумуляторов. Отдают хороший ток до самого момента разряда

21.04.2019

    *Примечание:



    К сожалению маркетинговые игры в завышение емкости аккумуляторов стали уже нормой для производителей. Вообще говоря,производители аккумуляторов предлагают поставщикам завышать емкость, по крайней мере на 30%, при маркировке этикеток аккумуляторов 1800мАч 2300мАч и даже больше! В этом может быть ничего страшного для магазина игрушек, но такая тактика маркетинга способна выжить 1 неделю в нашем магазине с отзывами и обзорами клиентов, и именно поэтому мы гарантируем нашим Turnigy 1500mAh Ni-Zn аккумуляторам по меньшей мере, 1500мАч емкости.

    примечание переводчика:

    http://habrahabr.ru/post/89264/


    Turnigy Ni-ZN (Nickel-Zinc) batteries offer high voltage and excellent cycle life when compared with Ni-CD/Ni-MH batteries.

    The nominal voltage of these Turnigy Ni-ZN cells is 1.6V compared to that of only 1.2V with Ni-CD/Ni-MH. This means more power for your device and longer usable capacity. Our Ni-ZN cells provide on average 50% more usable capacity per cycle compared to a standard Ni-CD/Ni-MH cell of the same rated capacity.

    Category: Rechargeable AA battery
    Capacity: 1500mAh
    Voltage: 1.6V
    Chemistry: Ni-ZN High Voltage
    Weight: 25g
    Dimensions: 49x14mm

    *Note: When charging these Ni-ZN cells, set your charger to Ni-CD/Ni-MH mode using CV (constant voltage) charge function. Set the cutoff voltage to 1.9V per cell.

    We guarantee our cells are true to their capacity!
    Sadly battery marketing is an evil game, with overstated capacity being the industry norm. Generally speaking, battery factories will suggest vendors to overstate the capacity by at least 30%, marking 1800mAh cells with 2300mAh labels or more!
    While this might work for toy stores, such marketing tactics wouldnt survive 1 week in our store with customer feedbacks and reviews, and thats why we guarantee our TURNIGY 1500mAh Ni-ZN cells to be at least 1500mAh!


    Turnigy Ni-Zn (никель-цинковые) батареи обеспечивают высокое напряжение и отличный жизненный цикл по сравнению с Ni-CD/Ni-MH батареями.

    Номинальное напряжение этих Turnigy Ni-Zn аккумуляторов 1,6В в отличии от 1,2В у Ni-CD/Ni-MH. Это означает больше мощности и больше полезной емкости. Наши Ni-Zn аккумуляторы обеспечивают в среднем на 50% больше полезной емкости за один цикл по сравнению со стандартным Ni-CD/Ni-MH аккумулятором той же номинальной мощности.

    *Примечание: При зарядке этих Ni-Zn аккумуляторов, установить зарядное устройство в режим Ni-CD/Ni-MH функции заряда CV (постоянное напряжение) . Установить напряжение отсечки 1,9 В на "банку".


    Мы гарантируем что наши аккумуляторы соответствуют заявленной емкости!

    К сожалению маркетинговые игры в завышение емкости аккумуляторов стали уже нормой для производителей. Вообще говоря,производители аккумуляторов предлагают поставщикам завышать емкость, по крайней мере на 30%, при маркировке этикеток аккумуляторов 1800мАч 2300мАч и даже больше!
    В этом может быть ничего страшного для магазина игрушек, но такая тактика маркетинга способна выжить 1 неделю в нашем магазине с отзывами и обзорами клиентов, и именно поэтому мы гарантируем нашим Turnigy 1500mAh Ni-Zn аккумуляторам по меньшей мере, 1500мАч емкости.

    примечание переводчика: беглый поиск выдал много разного, вот ссылка на обзор аналогичного аккумулятора другого производителя:

    http://habrahabr.ru/post/89264/

Простое зарядное устройство для никель-цинковых аккумуляторов на TP4056

Эксперимент по эксплуатации никель-цинковых аккумуляторов , начатый в прошлом году, привёл к поиску зарядного устройства. Первая зарядка была произведена вообще от блока питания. Соединив элементы последовательно в готовом китайском держателе , на них было подано напряжение 3,8 вольт согласно рекомендациям заряжать напряжением 1,9 вольт каждый. Окончание заряда отслеживалось по падению зарядного тока.

В дальнейшем мы придумали универсальное зарядное устройство на микроконтроллере, прототип которого описан . Им можно заряжать любые аккумуляторы, от привычных никель-кадмиевых и никель-металл-гидридных до литиевых и даже свинцовых. Параллельно при этом ведётся подсчёт залитых миллиампер-часов, а для тестирования и восстановления есть режим разряда с аналогичным подсчётом. Это заметно упростило процесс, но как-то понадобилось заряжать ещё один комплект Ni-Zn, а собирать ещё одно универсальное зарядное устройство было лень, тем более, что требовался просто заряд без особого контроля и мониторнига.

Сразу закрались мысли, нельзя ли как-то переделать популярный китайский модуль зарядки лития на микросхеме TP4056 ? Разница в напряжении - 0,4 вольта. Но у TP4056 нет отдельного входа для слежения за напряжением, всё это находится внутри микросхемы. Поэтому подумалось, нельзя ли лишние доли вольта как-то погасить? Для подобных вещей часто используют диоды с их падением напряжения. Этот параметр также называется прямым напряжением диода и приводится в даташите в виде графика вольтамперной характеристики. Изучив эти графики, стало понятно, что нужным падением напряжения обладают лишь диоды Шоттки: на малых токах оно как раз находится в районе 0,4 вольт.


Для проверки мы выбрали диод 1N5818, подключив его последовательно с заряжаемыми аккумуляторами. В китайском модуле был заменён токозадающий резистор с 1,2 кОм на 2,55 кОм для тока в районе 500 мА. Идея частично сработала, но на малом токе - 50мА в конце зарядки - аккумулятор стоял слишком долго - более 2 часов, а до полного заряда не хватало всего 0,5В. Если ещё подержать, то, вероятно, через некоторое время аккумуляторы зарядятся полностью, и такой режим дозаряда даже скорее всего правильный. Напряжение на двух последовательно соединённых никель-цинковых аккумуляторах должно составлять 3,8 вольт, что соответствует 1,9 вольт на аккумулятор. После этого им следует дать "отлежаться", пока напряжение не опустится до 1,6 вольт, и можно пользоваться.


Полученное таким образом зарядное устройство является, по-видимому, самым простым и наиболее дешёвым вариантом с приличной функциональностью. Готовые зарядки для NiZn на Али, например, стоят соответственно самим аккумуляторам. А если применённый здесь модуль дополнить популярным USB-тестером, то получится ещё более функциональное зарядное устройство.


На модуле с

Сплав никель - цинк. Цинковые покрытия, легированные никелем (50% Ni и 50% Zn), имеют более высокую коррозионную стойкость, чем цинковые, и способны обеспечить анодную защиту стальным деталям от коррозии. Наиболее оптимальным для этой цели является электролит (в г/л):

Хлористый аммоний 200-250

Окись цинка 15-17

Хлористый никель 25 — 40

Кислота борная 20—25

Декстрин 5 — 10

Режим электролиза: температура электролита 15-20 °С, i к = 1 ÷ 2 А/дм 2 , аноды — раздельные Zn:Ni = 1:1, рН =6,3 ÷ 6,7.

Покрытия получаются блестящими и хорошо сцепленными с основой. Продолжительность действия добавки декстрина (блескообразователь) составляет 5 г/л на 10 А.ч/л.

Наряду с этим составом применяют электролит, содержащий (в г/л):

Сернокислый цинк 75-125

Сернокислый никель 25 — 75

Сернокислый аммоний 35 — 40

Аммиак, мл/л 250

Режим электролиза : температура электролита 15 — 20°С, i к = 1 ÷ 2 А/дм 2 , (i к в начале электролиза 2 — 3 А/дм 2 в течение 1 мин), аноды — из сплава, который осаждается на катоде.

Декоративные и светопоглощающие покрытия из черного никеля в оптической промышленности осаждают из электролита (в г/л):

Сернокислый никель 65 — 75

Сернокислый цинк 30 — 40

Никель — аммоний сернокислый 45 — 50

Натрий роданистый 15

Кислота борная 25

Режим электролиза: температура электролита 45 —55°С, i к = 1,0 ÷1,5 А/дм 2 , аноды раздельные Ni: Zn = 1:1 или из сплава, который осаждается на катоде.

Сначала при 0,02 — 0,05 А/дм 2 рекомендуется осадить определенный слой обычного никеля в качестве подслоя, а потом повысить i к до 1,3 А/дм 2 и нанести черный никель. Благодаря этому повышается адгезия покрытия с основой. Для работы в условиях умеренного климата (помимо подслоя меди и никеля по стали) черные никелевые покрытия дополнительно обрабатывают в горячем растворе дву-хромовокислого калия.

В покрытия, получаемые из роданистого электролита, помимо никеля и цинка входит роданистый натрий и двойная никель-аммонийная соль.

При малых i к = 0,2 ÷ 0,4 А/дм 2 на катоде осаждается серый никель, прочно сцепленный с основой. Увеличение i к от 0,4 до 1,0 А/дм 2 приводит к получению черных осадков. Одновременно изменяется качество — покрытия становятся хрупкими. При понижении температуры электролита до 20°С покрытия становятся грубыми, с подгарами. Переход от серого никеля к черному происходит скачкообразно. На рис. 43, участок 1 кривой соответствует выделению никеля, а участок 2 — выделению цинка. На переходном участке происходит восстановление Ni — Zn на катоде. При 50°С этот момент соответствует i к = 0,35 ÷ 0,4 А/дм 2 . В составе серых покрытий содержатся следы цинка, 14 — 15% черного сульфида никеля, 74% гидроокиси цинка, 9% обычного сульфида никеля.

Рис. 43.

1 — выделение никеля; 2 — выделение цинка

Катодное восстановление сплава Ni — Zn сводится к тому, что при значении i к, отвечающем скачку потенциала на поверхности катода, начинается выделение пузырьков водорода. С повышением рН прикатодного слоя в нем образуется гидроокись цинка, которая, адсорбируясь поверхностью катода, пассивирует грани растущих кристаллов и прекращает их рост.

В результате восстановления роданидов образуются сульфиды металлов, при осаждении которых на пассивированных гранях катода последние становятся электропроводными. Это обеспечивает возникновение новых центров кристаллизации металла, дальнейший рост которых тормозится пассивированием граней кристаллов гидроокисью цинка.

Микротвердость покрытий сплавом Ni — Zn составляет 400 — 500 кгс/мм 2 и возрастает с увеличением содержания никеля в сплаве. Сплав Ni — Zn может быть использован в качестве самостоятельного покрытия или подслоя перед нанесением на сталь хромо-никелевых покрытий.

Петр Степанович Мельников . Справочник по гальванопокрытиям в машиностроении , 1979 .

Приобретал я NiZn аккумуляторы (не по этой ссылке, правда). AA были заявлены как 2800 мВт*ч (просто элементы в зеленой оболочке с падписью как на матричном принтере напечатанной), AAA - 1150 мВт*ч (эти в нормальной оболочке, под брендом UltraCell). В реале элементы AA выдали 1400-1480 мА*ч (т.е., весьма похоже на элементы PowerGenix) или 2250 мВт*ч при разряде током 500 мА. AAA элементы выдали 560-580 мА*ч (или 900 мВт*ч) при разряде током 200 мА. Так что тут обычное китайское приукрашивание характеристик, но не более. Примерно 10-15% из них имели высокий саморазряд (продавцы без проблем высылали замену).

Насчет же зарядки Z4... она явно была сделана изначально под Li-ion, и только затем добавлены дополнительные напряжения для LeFePO4, NiZn, NiMH. Что касается ее схемотехники, то это стандартный блокинг-генератор, преобразующий 220 В в примерно 12 В, и импульсный преобразователь на MC34063 с 12 В в нужное напряжение (от 1,46 до 4,20 В в зависимости от положения переключателя). Никакого микропроцессора или специализированного контроллера заряда нет - это просто тупой стабилизатор напряжения с ограничением по току. Для указанной микросхемы свист, шипение и т.п. звуковые эффекты - вполне нормальное явление, они вызваны самим принципом работы микросхемы (частота преобразования не фиксирована, и ее изменение и слышно как свист и шипение). На безопасность не влияет. Гораздо больше внимания надо уделять тому, чтобы не включить одновременно сеть и внешний источник питания. Они никак не развязаны, т.е. предсказать результат будет сложно.

MC34063 выдает запрограммированное переключателем напряжение (1,46 В для NiMH, 1,86 В для NiZn, 3,63 В для LiFePO4 и 4,20 В для Li-ion), которое затем из одной точки подается на все 4 аккумулятора через резисторы по 0,3 Ом. Собственно, вся развязка аккумуляторов друг от друга - это эти резисторы (бывает и хуже - просто параллельное включение). Хочу заметить, что 1,46 В мало для зарядки NiMH, а 1,86 В - для зарядки NiZn. Чтобы нормально их заряжать этим ЗУ, надо его доработать напильником (впаять пару резисторов, которые приведут к тому, что напряжение поднимется до 1,49 В и 1,91 В соответственно). Для Li-ion ничего дорабатывать не надо.

Про 1200 мА - вранье, общий ток вряд ли превысит 500-600 мА на все аккумуляторы (это ограничение заложено в схеме токоограничения MC34063). В принципе, можно его немного сдвинуть (сама микросхема может до 750 мА выдавать без опасности перегрева), но потянет ли это преобразователь 220-12 - неизвестно.

Насчет индикаторов - на них можно не смотреть. Они отключаются тупо по напряжению (1,42 В для NiMH и 1,80 В для NiZn, и только для Li-ion при 4,20 В). 1,42 В и 1,80 В - это очень мало, фактически, аккумуляторы при этом заряжены, от силы, наполовину. Даже когда индикаторы погасли, аккумуляторы продолжают заряжаться как ни в чем не бывало. Для полной зарядки пары AA NiZn аккумуляторов надо часов 20 (после доработки время снижается примерно до 10 часов), более точно можно определить мультиметром (напряжение на аккумуляторе достигнет 1,85-1,86 В).

Итог: NiZn аккумуляторы достаточно интересны, хотя и могут оказаться неподходящими для определенной техники (не рекомендую использовать их в устройствах, работающих от 2 аккумуляторов - в них может стоять повышающий преобразователь, который не может выдать напряжение ниже, чем на входе, а 3,7 В может оказаться слишком много для микросхем, рассчитанных на 3,3 В). Зарядка же - конструктор для любителя. После доработки годится для зарядки нечетного количества NiZn аккумуляторов (нормальные ЗУ их, обычно, только парами заряжают).

Похожие статьи