Самодельные приборы для измерения емкости. Цифровой измеритель ESR (ЭПС) и ёмкости на контроллере

15.10.2020

В последнее время в радиолюбительской и профессиональной литературе очень много внимания уделяется таким устройствам как электролитические конденсаторы. И не удивительно, ведь частоты и мощности растут «на глазах», и на эти конденсаторы ложится огромная ответственность за работоспособность как отдельных узлов, так и схемы в целом.

Хочу сразу предупредить, что большинство узлов и схемных решений было почерпнуто из форумов и журналов, поэтому я никакого авторства со своей стороны не заявляю, напротив, хочу помочь начинающим ремонтникам определиться в бесконечных схемах и вариациях измерителей и пробников. Все предоставленные здесь схемы были не однократно собраны и проверены в работе, и сделаны соответствующие выводы по работе той или иной конструкции.

Итак, первая схема, ставшая чуть ли не классикой для начинающих ESR Метростроителей «Манфред» - так ее любезно называют форумчане, по имени ее созидателя, Манфреда Луденса ludens.cl/Electron/esr/esr.html

Её повторили сотни, а может и тысячи радиолюбителей, и остались в основном довольны результатом. Основное его достоинство, это последовательная схема измерения, благодаря чему, минимальному ESR соответствует максимальное напряжение на шунтовом резисторе R6, что, в свою очередь полезно сказывается на работе диодов детектора.

Эту схему я сам не повторял, но пришел к аналогичной путем проб и ошибок. Из недостатков можно отметить «гуляние» нуля от температуры, и зависимость шкалы от параметров диодов и ОУ. Повышенное напряжение питания, требуемое для работы прибора. Чувствительность прибора можно легко повысить, уменьшив резисторы R5 и R6 до 1-2 ома и, соответственно увеличив усиление ОУ, возможно придется его заменить на 2 более скоростных.

Мой первый пробник ЕПС, исправно работающий по сегодняшний день.


Схемы не сохранилось, да ее и можно сказать и не было, собрал со всего миру по нитке, то что меня устраивало схемотехнически, правда, за основу была взята такая вот схема из журнала радио:


Были произведены следующие изменения:

1. Питание от литиевого аккумулятора мобильника
2. исключен стабилизатор, так как пределы рабочих напряжений Литиевого Аккумулятора довольно узкие
3. трансформаторы TV1 TV2 шунтированы резисторами 10 и 100 Ом, для уменьшения выбросов при измерении малых ескостей
4. Выход 561лн2 был буферизирован 2мя комплементарными транзисторами.

В общем получился такой вот девайс:


После сборки и калибровки данного девайса были тут-же отремонтированы 5 цифровых телефонных аппаратов «Мередиан», которые уже лет 6 лежали в коробке с надписью «безнадежные». Все в отделе начали делать себе аналогичные пробнички:).

Для большей универсализации, мною были добавлены дополнительный функции:

1. приемник инфрокрасного излучения, для визуальной и слуховой проверки пультов ДУ, (очень востребованная функция для ремонтов телеков)
2. подсветка места касания щупами конденсаторов
3. «вибрик» от мобилки, помогает локализовать плохие пайки и микрофонный эффект в деталях.

Видео проверки пульта

А недавно на форуме «radiokot.ru» господин Simurg выложил статью посвященную аналогичному прибору. В нем он применил низковольтное питание, мостовую схему измерения, что позволило измерять конденсаторы со сверхнизким уровнем ESR.


Его коллега RL55 взяв схему Simurg за основу, предельно упростил приборчик, по его заявлениям не ухудшив параметры. Его схема выглядит вот так:


Прибор ниже, мне пришлось собирать на скорую руку, как говорится «по нужде». Был в гостях у родственников,так там телевизор сломался, никто не мог его отремонтировать. Вернее ремонтировать удавалось, но не более чем на неделю, все время горел транзистор строчной развертки, схемы телевизора не было. Тут вспомнил, что видел на форумах простенький пробничек, схему помнил наизусть, родственник тоже немного занимался радиолюбительством, аудио усилители «клепал», поэтому все детали быстро нашлись. Пару часов пыхтения паяльником, и родился вот такой приборчик:


Были в 5 минут локализованы и заменены 4 подсохших електролитика, которые мультиметром определялись как нормальные, выпито за успех некоторое количество благородного напитка. Телек после ремонта уже 4 года работает исправно.


Прибор этого типа стал как панацея в трудные минуты, когда нет с собою нормального тестера. Собирается быстро, производится ремонт, и напоследок торжественно дарится хозяину на память, и, «на случай чего». После такой церемонии душа платящего как правило раскрывается вдвое, а то и втрое шире:)

Захотелось чего-то синхронного, начал думать над схемой реализации, и вот в журнале «Радио 1 2011», как по мановению вошебнлй палочки опубликована статья, даже думать не пришлось. Решил проверить, что за зверь. Собрал, получилось вот так:


Особого восторга изделие не вызвало, работает практически как и все предыдущие, есть, конечно разница в показаниях в 1-2 деления, в определенных случаях. Может его показания и более достоверны, но пробник есть пробник, на качестве дефектации это почти никак не отражается. Тоже снабдил светодиодом, чтобы смотреть «куда суешь?».


В общем, для души и ремонтов делать можно. А для точных измерений надо поискать схему измерителя ESR посолиднее.

Ну, и на последок на сайте monitor.net, участник buratino выложил простейший проект, как из обычного дешевого цифрового мультиметра можно сделать пробник ESR. Проект так меня заинтриговал, что решил попробовать, и вот что у меня из этого вышло.


Корпус приспособил от маркера

Схема эта, несмотря на свою видимую сложность, совсем проста в повторении, поскольку собрана на цифровых микросхемах и при отсутствии ошибок в монтаже и использовании заведомо исправных деталей практически не требует настройки. Тем не менее, возможности устройства достаточно велики:

  • диапазон измерения – 0,01 — 10000 мкФ;
  • 4 поддиапазона – 10, 100, 1000, 10 000 мкФ;
  • выбор поддиапазона – автоматический;
  • индикация результата – цифровая, 4 разряда с плавающей десятичной точкой;
  • погрешность измерения – единица младшего разряда;

Рассмотрим схему прибора:

щелкните для увеличения

На микросхеме DD1, точнее на двух его элементах, собран кварцевый генератор, работа которого пояснений не требует. Дальше тактовая частота поступает на делитель, собранный на микросхемах DD2 – DD4. Сигналы с него с частотами 1 000, 100, 10 и 1 кГц поступают на мультиплексор DD6.1, который использован в качестве узла автоматического выбора поддиапазона.

Основной узел измерения – одновибратор, собранный на элементах DD5.3, DD5.4, длительность импульса которого напрямую зависит от подключенного к нему конденсатора. Принцип измерения емкости – подсчет количества импульсов за время работы одновибратора. На элементах DD5.1, DD5.2 собран узел, предотвращающий дребезг контактов кнопки «Старт измерения». Ну и последняя часть схемы — четырехразрядная линейка двоично-десятичных счетчиков DD9 — DD12 с выводом на четыре семисегментных индикатора.

Рассмотрим алгоритм работы измерителя. При нажатии на кнопку SB1 двоичный счетчик DD8 обнуляется и переключает узел диапазона (мультиплексор DD6.1) на самый нижний диапазон измерения – 0.010 – 10.00 мкФ. При этом на один из входов электронного ключа DD1.3 поступают импульсы частотой 1 МГц. На второй вход этого же ключа проходит разрешающий сигнал с одновибратора, длительность которого прямо пропорциональна подключенной к нему емкости измеряемого конденсатора.

Таким образом на счетную декаду DD9…DD12 начинают поступать импульсы с частотой 1 МГЦ. Если происходит переполнение декады, то сигнал переноса с DD12 увеличивает показания счетчика DD8 на единицу и разрешает запись нуля в триггер DD7 по входу D. Этот нуль включает формирователь DD5.1, DD5.2 а он в свою очередь сбрасывает счетную декаду, снова устанавливает DD7 в «1» и перезапускает одновибратор. Процесс повторяется, но на счетную декаду через коммутатор теперь поступает частота 100 кГц (включился второй диапазон).

Если до завершения импульса с одновибратора счетная декада снова переполнилась, то опять происходит смена диапазона. Если одновибратор отключился раньше, то счет останавливается и на индикаторе можно прочитать значение подключенной для измерения емкости. Последний штрих – блок управления десятичной точкой, которая и указывает текущий поддиапазон измерения. Его функции выполняет вторая часть мультиплексора DD6, которая засвечивает нужную точку в зависимости от включенного поддиапазона.

В качестве индикаторов в схеме используются вакуумные люминесцентные индикаторы ИВ6, поэтому блок питания измерителя должен выдавать два напряжения: 1 В для накала и +12 В для анодного питания ламп и микросхем. Если индикаторы заменить ЖКИ, то можно обойтись одним источником +9В, применение же светодиодных матриц невозможно из-за малой нагрузочной способности микросхем DD9…DD12.

В качестве калибровочного резистора R8 лучше применить многооборотный, поскольку именно от точности калибровки будет зависеть величина погрешности измерения прибора. Остальные резисторы могут быть МЛТ-0.125. По поводу микросхем — в приборе можно использовать любую из серий К1561, К564, К561, К176, но следует иметь в виду, что 176 серия очень неохотно работает с кварцевым резонатором (DD1).

Настройка прибора достаточно проста, но выполнить ее следует с особой тщательностью.

  • Временно отключить кнопку SB1 от DD8 (вывод 13).
  • В точку соединения R3 с R2 подать прямоугольные импульсы частотой примерно 50-100 Гц (подойдет любой самый простой генератор на логической микросхеме).
  • На место измеряемого конденсатора подключить образцовый, емкость которого известна и лежит в диапазоне 0.5 – 4 мкФ (к примеру, К71-5В 1 мкф±1%). Если есть возможность, то емкость лучше измерить с помощью измерительного моста, но можно понадеяться и на емкость, указанную на корпусе. Здесь нужно иметь в виду, что как точно вы откалибруете прибор, так он вам и будет в будущем измерять.
  • С помощью подстроечного резистора R8 выставить показания индикаторов как можно точнее по соответствию с емкостью эталонного конденсатора. После калибровки подстроечный резистор лучше законтрить каплей лака или краски.

По материалам «Радиолюбитель» №5, 2001г.

Измеритель емкости конденсаторов своими руками

Представляю вашему вниманию, как просто сделат ь измеритель ЭПС конденсаторов , который собирается буквально за пару часов буквально "На коленке". Сразу предупреждаю, что не являюсь автором этой идеи, данную схему уже сотню раз повторили разные люди. В схеме всего десять деталей, и любой цифровой мультиметр, с ним ничего колдовать не нужно, просто подпаиваемся к точкам и все.

Схема устройства измеритель эпс :


О деталях измерителя :

Трансформатор с соотношением витков 11\1. Первичную обмотку нужно мотать виток к витку на кольце М2000 К10х6х3, на всей окружности кольца (изолированого), вторичку желательно распределить равномерно, с небольшим натягом.

Диод D1 может быть любой, на частоту более 100 КГц и напряжение более 40В, но лучше Шоттки.

Диод D2 - супресор на 26В-36В. Транзистор - типа КТ3107, КТ361 и аналогичные.


Измерения ЭПС проводить на измерительном пределе 20В. При подключении разъёма измерительной выносной "головки" прибор "автоматически" переходит в режим измерения ЭПС, об этом свидетельствует показание примерно 36В прибора на пределе 200В и 1000В (зависит от применённого супресора), а на пределе 20В - показание "выход за предел измерения".

При отключении разъёма измерительной выносной "головки" прибор автоматически переходит штатный режим мультиметра.

Итого : включаем адаптер - автоматом включается измеритель, выключили - штатный мультиметр. Теперь калибровка , ничего заумного, обычный резистор (не проволочный) подгоняем шкалу. Вот примерно как это выглядело:


Если закоротить щупы , на индикаторе 0.00-0.01, вот одна сотая и есть погрешность в интервале измерения до 1 Ом, значения ЭПС конденсаторов сравнивал с заводским измерителем.

Почти два года назад купил цифровой измеритель ёмкости, взял, можно сказать, первое что попалось. Так сильно меня утомила неспособность мультиметра Маstech MY62 измерять ёмкость конденсаторов более 20 микрофарад, да и меньше 100 пикофарад он правильно не мерил. Понравилось в СМ-7115А два фактора:

  1. Измеряет весь востребованный диапазон
  2. Компактность и удобство

Заплатил 750 рублей. Искренне считал, что он этих денег не стоит, а цену «взвинтили» по причине полного отсутствия конкурентной продукции. Страна производитель - конечно Китай. Опасался, что будет «привирать», больше того был в этом уверен - однако напрасно.

Ёмкостемер и провода к нему были упакованы в полиэтилен, каждый в свою оболочку и вложены в коробку из толстого картона, свободное пространство заполнено пенопластом. Так же в коробке находилась инструкция на английском языке. Габаритные размеры прибора 135 х 72 х 36 мм, вес 180 грамм. Цвет корпуса чёрный, передняя панель с сиреневым отливом. Имеет жидкокристаллический индикатор, девять диапазонов измерения, два положения отключения питания, регулятор установки нуля, 15 сантиметровые, разного цвета (красный - чёрный) провода, при помощи которых подключается к прибору измеряемый конденсатор, заканчиваются зажимами типа «крокодил», а гнёзда на корпусе прибора, для их подключения, замаркированы цветным обозначением соответствующей полярности, дополнительно возможно измерение и без них (что увеличивает точность), для чего имеются два продолговатых гнезда, которые подписаны символом измеряемого конденсатора. Используется батарея питания на 9 вольт, имеется функция автоматической индикации её разряда. Жидкокристаллический индикатор трёхразрядный +1 знак после запятой, заявленный производителем диапазон измерения составляет от 0,1 пФ до 20000 мкФ, с возможностью юстировки на диапазоне измерения от 0 до 200 пФ, для установки нуля, в пределах +/- 20 пФ, время одного измерения 2-3 секунды.

Таблица допустимых погрешностей при измерениях, индивидуально по диапазонам. Представлена изготовителем.

На задней половине корпуса имеется интегрированная подставка. Она даёт возможность более компактно разместить измеритель на рабочем месте и изменяет в лучшую сторону обзор жидкокристаллического индикатора.

Батарейный отсек выполнен полностью автономно, для смены элемента питания достаточно сдвинуть в сторону его крышку. Удобство из разряда неприметных, когда оно есть.

Для того чтобы снять заднюю крышку корпуса достаточно открутить один саморез. Самый массивный компонент печатной платы - предохранитель на 500 мА.

В основу работы измерительного прибора положен метод двойного интегрирования. Собран он на логических счётчиках HEF4518BT - 2 шт, ключе HEF4066BT, десятичном счётчике с дешифратором HCF4017 и смд транзисторах: J6 - 4 шт, М6 - 2 шт.

Открутив ещё шесть саморезов можно увидеть другую сторону печатной платы. Переменный резистор, при помощи которого производится установка на «0» стоит так, что его можно легко заменить при необходимости. Слева контакты для подключения измеряемого конденсатора, те, что выше, для непосредственного подключения (без проводов).

Прибор выставляется на нулевую точку отсчёта не сразу, но выставленный показание удерживает. С отключёнными проводами сделать это гораздо проще.

Для наглядной демонстрации разницы в точности измерения при различный способах измерений (с проводами и без) взял конденсаторы малой ёмкости с заводской маркировкой - 8,2 пФ

Видеообзор прибора

Без проводов С проводами
№1 8 пФ 7,3 пФ
№2 7,6 пФ 8,3 пФ
№3 8,1 пФ 9,3 пФ

Всё наглядно, однозначно без проводов измерения будут точнее, хотя и расхождение-то практически в пределах 1 пФ. Так же неоднократно производил измерения конденсаторов стоящих на платах - показания замера исправных вполне адекватные согласно указанного на них номинала. Если не быть сильно большим придирой, то вполне можно сказать, что добротность измерения у прибора достаточно высокая.

Недостатки прибора

  • установка на ноль производится не сразу,
  • у лепестков контактов, для измерения без проводов, отсутствует упругость, после разжатия в исходное положение не возвращаются,
  • измеритель не укомплектован калибровочной ёмкостью.

Выводы

В общем и целом прибором доволен. Измеряет хорошо, компактен (легко помещается в карман), так что на радиорынке беру не то, что дают, а что нужно. Планирую, как будет время, доработать: заменить потенциометр и контакты непосредственного измерения. Его схему, или что-то похожее, можно поискать в разделе . Рассказал «всё как есть», а вы уже решайте сами, стоит ли пополнять домашнюю лабораторию таким прибором. Автор - Babay.

В электрических цепях применяются конденсаторы разного типа. В первую очередь они отличаются по емкости. Для того чтобы определить этот параметр, используются специальные измерители. Указанные устройства могут производиться с различными контактами. Современные модификации выделяются высокой точностью замеров. Для того чтобы сделать простой измеритель емкости конденсаторов своими руками, необходимо ознакомиться с основными составляющими прибора.

Как устроен измеритель?

Стандартная модификация включает в себя модуль с расширителем. Данные о выводятся на дисплей. Некоторые модификации функционируют на базе релейного транзистора. Он способен работать на разных частотах. Однако стоит отметить, что такая модификация не подходит для многих типов конденсаторов.

Устройства низкой точности

Сделать низкой точности измеритель ЭПС емкости конденсаторов своими руками можно при помощи переходного модуля. Однако в первую очередь используется расширитель. Контакты для него целесообразнее подбирать с двумя полупроводниками. При выходном напряжении 5 В ток должен составлять не более 2 А. Для защиты измерителя от сбоев применяются фильтры. Настройку осуществлять следует при частоте 50 Гц. Тестер в данном случае должен показывать сопротивление не выше 50 Ом. У некоторых возникают проблемы с проводимостью катода. В данном случае следует заменить модуль.

Описание моделей высокой точности

Делая измеритель емкости конденсаторов своими руками, расчет точности следует производить исходя из линейного расширителя. Показатель перегрузки модификации зависит от проводимости модуля. Многие эксперты советуют для модели подбирать дипольный транзистор. В первую очередь он способен работать без тепловых потерь. Также стоит отметить, что представленные элементы редко перегреваются. Контактор для измерителя можно использовать низкой проводимости.

Чтобы сделать простой точный измеритель емкости конденсаторов своими руками, стоит позаботиться о тиристоре. Указанный элемент должен работать при напряжении не менее 5 В. При проводимости 30 мк перегруженность у таких устройств, как правило, не превышает 3 А. Фильтры используются разного типа. Устанавливать их следует за транзистором. Также стоит отметить, что дисплей можно подключать только через проводниковые порты. Для зарядки измерителя подойдут батареи на 3 Вт.

Как сделать модель серии AVR?

Сделать измеритель емкости конденсаторов своими руками AVR можно только на базе переменного транзистора. В первую очередь для модификации подбирается контактор. Для настройки модели стоит сразу замерить выходное напряжение. Отрицательное сопротивление у измерителей не должно превышать 45 Ом. При проводимости 40 мк перегрузка в устройствах составляет 4 А. Чтобы обеспечить максимальную точность измерений, используются компараторы.

Некоторые эксперты рекомендуют подбирать только открытые фильтры. Они не боятся импульсных помех даже при большой загруженности. Полюсные стабилизаторы в последнее время пользуются большим спросом. Для модификации не подходят только сеточные компараторы. Перед включением устройства делается замер сопротивления. У качественных моделей данный параметр составляет примерно 40 Ом. Однако в данном случае многое зависит от частотности модификации.

Настройка и сборка модели на базе PIC16F628A

Сделать измеритель емкости конденсаторов своими руками на PIC16F628A довольно проблематично. В первую очередь для сборки подбирается открытый трансивер. Модуль разрешается использовать регулируемого типа. Некоторые эксперты не советуют устанавливать фильтры высокой проводимости. Перед пайкой модуля проверяется выходное напряжение.

При повышенном сопротивлении рекомендуется заменить транзистор. С целью преодоления импульсных помех применяются компараторы. Также можно использовать проводниковые стабилизаторы. Дисплеи часто применяются текстового типа. Устанавливать их стоит через канальные порты. Настройка модификации происходит при помощи тестера. При завышенных параметрах емкости конденсаторов стоит заменить транзисторы с малой проводимостью.

Модель для электролитических конденсаторов

При необходимости можно сделать измеритель емкости электролитических конденсаторов своими руками. Магазинные модели этого типа выделяются низкой проводимостью. Многие модификации производятся на контакторных модулях и работают при напряжении не более 40 В. Система защиты у них используется класса РК.

Также стоит отметить, что измерители данного типа отличаются пониженной частотностью. Фильтры у них применяются только переходного типа, они способны эффективно справляться с импульсными помехами, а также гармоническими колебаниями. Если говорить про недостатки модификаций, то важно отметить, что у них малая пропускная способность. Они показывают плохие результаты в условиях повышенной влажности. Также эксперты указывают на несовместимость с проводными контакторами. Устройства нельзя применять в цепи переменного тока.

Модификации для полевых конденсаторов

Устройства для полевых конденсаторов выделяются пониженной чувствительностью. Многие модели способны работать от прямолинейных контакторов. Устройства чаще всего используются переходного типа. Для того чтобы сделать модификацию своими руками, надо применять регулируемый транзистор. Фильтры устанавливаются в последовательном порядке. Для проверки измерителя применяются сначала конденсаторы малой емкости. При этом тестером фиксируется отрицательное сопротивление. При отклонении свыше 15 % необходимо проверить работоспособность транзистора. Выходное напряжение на нем не должно превышать 15 В.

Устройства на 2 В

На 2 В измеритель емкости конденсаторов своими руками делается довольно просто. В первую очередь эксперты рекомендуют заготовить открытый транзистор с низкой проводимостью. Также важно подобрать для него хороший модулятор. Компараторы, как правило, используются низкой чувствительности. Система защиты у многих моделей применяется серии КР на фильтрах сеточного типа. Для преодоления импульсных колебаний используются волновые стабилизаторы. Также стоит отметить, что сборка модификации предполагает применение расширителя на три контакта. Для настройки модели следует использовать контактный тестер, а показатель сопротивление не должен быть ниже 50 Ом.

Модификации на 3 В

Складывая измеритель емкости конденсаторов своими руками, можно использовать переходник с расширителем. Транзистор целесообразнее подбирать линейного типа. В среднем проводимость у измерителя должна равняться 4 мк. Также перед установкой фильтров важно зафиксировать контактор. Многие модификации также включают в себя трансиверы. Однако данные элементы не способны работать с полевыми конденсаторами. Предельный параметр емкости у них равняется 4 пФ. Система защиты у моделей применяется класса РК.

Модели на 4 В

Собирать измеритель емкости конденсаторов своими руками разрешается только на линейных транзисторах. Также для модели потребуется качественный расширитель и переходник. Если верить экспертам, то фильтры целесообразнее применять переходного типа. Если рассматривать рыночные модификации, то у них может использоваться два расширителя. Работают модели при частоте не более 45 Гц. При этом чувствительность у них часто меняется.

Если собирать простой измеритель, то контактор можно использовать без триода. У него малая проводимость, однако он способен работать при большой загруженности. Также стоит отметить, что модификация должна включать в себя несколько полюсных фильтров, которые будут уделять внимание гармоническим колебаниям.

Модификации с однопереходным расширителем

Сделать измеритель емкости конденсаторов своими руками на базе однопереходного расширителя довольно просто. В первую очередь рекомендуется подобрать для модификации модуль с низкой проводимостью. Параметр чувствительности при этом должен составлять не более 4 мВ. У некоторых моделей имеется серьезная проблема с проводимостью. Транзисторы применяются, как правило, волнового типа. При использовании сеточных фильтров быстро нагревается тиристор.

Чтобы избежать подобных проблем, рекомендуется устанавливать сразу два фильтра на сеточных переходниках. В конце работы останется только припаять компаратор. Для повышения работоспособности модификации устанавливаются канальные стабилизаторы. Также стоит отметить, что существуют устройства на переменных контакторах. Они способны работать при частоте не более 50 Гц.

Модели на базе двухпереходных расширителей: сборка и настройка

Сложить на двухпереходных расширителях цифровой измеритель емкости конденсаторов своими руками довольно просто. Однако для нормальной работы модификаций подходят только регулируемые транзисторы. Также стоит отметить, что при сборке нужно подбирать импульсные компараторы.

Дисплей для устройства подойдет строчного типа. При этом порт разрешается использовать на три канала. Для решения проблем с искажением в цепи применяются фильтры низкой чувствительности. Также стоит отметить, что модификации нужно собирать на диодных стабилизаторах. Настройка модели осуществляется при отрицательном сопротивлении 55 Ом.

Похожие статьи