Схема цифрового измерителя емкости оксидных конденсаторов. Прибор для измерения емкости конденсаторов

15.10.2020

Почти два года назад купил цифровой измеритель ёмкости, взял, можно сказать, первое что попалось. Так сильно меня утомила неспособность мультиметра Маstech MY62 измерять ёмкость конденсаторов более 20 микрофарад, да и меньше 100 пикофарад он правильно не мерил. Понравилось в СМ-7115А два фактора:

  1. Измеряет весь востребованный диапазон
  2. Компактность и удобство

Заплатил 750 рублей. Искренне считал, что он этих денег не стоит, а цену «взвинтили» по причине полного отсутствия конкурентной продукции. Страна производитель - конечно Китай. Опасался, что будет «привирать», больше того был в этом уверен - однако напрасно.

Ёмкостемер и провода к нему были упакованы в полиэтилен, каждый в свою оболочку и вложены в коробку из толстого картона, свободное пространство заполнено пенопластом. Так же в коробке находилась инструкция на английском языке. Габаритные размеры прибора 135 х 72 х 36 мм, вес 180 грамм. Цвет корпуса чёрный, передняя панель с сиреневым отливом. Имеет жидкокристаллический индикатор, девять диапазонов измерения, два положения отключения питания, регулятор установки нуля, 15 сантиметровые, разного цвета (красный - чёрный) провода, при помощи которых подключается к прибору измеряемый конденсатор, заканчиваются зажимами типа «крокодил», а гнёзда на корпусе прибора, для их подключения, замаркированы цветным обозначением соответствующей полярности, дополнительно возможно измерение и без них (что увеличивает точность), для чего имеются два продолговатых гнезда, которые подписаны символом измеряемого конденсатора. Используется батарея питания на 9 вольт, имеется функция автоматической индикации её разряда. Жидкокристаллический индикатор трёхразрядный +1 знак после запятой, заявленный производителем диапазон измерения составляет от 0,1 пФ до 20000 мкФ, с возможностью юстировки на диапазоне измерения от 0 до 200 пФ, для установки нуля, в пределах +/- 20 пФ, время одного измерения 2-3 секунды.

Таблица допустимых погрешностей при измерениях, индивидуально по диапазонам. Представлена изготовителем.

На задней половине корпуса имеется интегрированная подставка. Она даёт возможность более компактно разместить измеритель на рабочем месте и изменяет в лучшую сторону обзор жидкокристаллического индикатора.

Батарейный отсек выполнен полностью автономно, для смены элемента питания достаточно сдвинуть в сторону его крышку. Удобство из разряда неприметных, когда оно есть.

Для того чтобы снять заднюю крышку корпуса достаточно открутить один саморез. Самый массивный компонент печатной платы - предохранитель на 500 мА.

В основу работы измерительного прибора положен метод двойного интегрирования. Собран он на логических счётчиках HEF4518BT - 2 шт, ключе HEF4066BT, десятичном счётчике с дешифратором HCF4017 и смд транзисторах: J6 - 4 шт, М6 - 2 шт.

Открутив ещё шесть саморезов можно увидеть другую сторону печатной платы. Переменный резистор, при помощи которого производится установка на «0» стоит так, что его можно легко заменить при необходимости. Слева контакты для подключения измеряемого конденсатора, те, что выше, для непосредственного подключения (без проводов).

Прибор выставляется на нулевую точку отсчёта не сразу, но выставленный показание удерживает. С отключёнными проводами сделать это гораздо проще.

Для наглядной демонстрации разницы в точности измерения при различный способах измерений (с проводами и без) взял конденсаторы малой ёмкости с заводской маркировкой - 8,2 пФ

Видеообзор прибора

Без проводов С проводами
№1 8 пФ 7,3 пФ
№2 7,6 пФ 8,3 пФ
№3 8,1 пФ 9,3 пФ

Всё наглядно, однозначно без проводов измерения будут точнее, хотя и расхождение-то практически в пределах 1 пФ. Так же неоднократно производил измерения конденсаторов стоящих на платах - показания замера исправных вполне адекватные согласно указанного на них номинала. Если не быть сильно большим придирой, то вполне можно сказать, что добротность измерения у прибора достаточно высокая.

Недостатки прибора

  • установка на ноль производится не сразу,
  • у лепестков контактов, для измерения без проводов, отсутствует упругость, после разжатия в исходное положение не возвращаются,
  • измеритель не укомплектован калибровочной ёмкостью.

Выводы

В общем и целом прибором доволен. Измеряет хорошо, компактен (легко помещается в карман), так что на радиорынке беру не то, что дают, а что нужно. Планирую, как будет время, доработать: заменить потенциометр и контакты непосредственного измерения. Его схему, или что-то похожее, можно поискать в разделе . Рассказал «всё как есть», а вы уже решайте сами, стоит ли пополнять домашнюю лабораторию таким прибором. Автор - Babay.

Измеритель емкости конденсаторов своими руками

Представляю вашему вниманию, как просто сделат ь измеритель ЭПС конденсаторов , который собирается буквально за пару часов буквально "На коленке". Сразу предупреждаю, что не являюсь автором этой идеи, данную схему уже сотню раз повторили разные люди. В схеме всего десять деталей, и любой цифровой мультиметр, с ним ничего колдовать не нужно, просто подпаиваемся к точкам и все.

Схема устройства измеритель эпс :


О деталях измерителя :

Трансформатор с соотношением витков 11\1. Первичную обмотку нужно мотать виток к витку на кольце М2000 К10х6х3, на всей окружности кольца (изолированого), вторичку желательно распределить равномерно, с небольшим натягом.

Диод D1 может быть любой, на частоту более 100 КГц и напряжение более 40В, но лучше Шоттки.

Диод D2 - супресор на 26В-36В. Транзистор - типа КТ3107, КТ361 и аналогичные.


Измерения ЭПС проводить на измерительном пределе 20В. При подключении разъёма измерительной выносной "головки" прибор "автоматически" переходит в режим измерения ЭПС, об этом свидетельствует показание примерно 36В прибора на пределе 200В и 1000В (зависит от применённого супресора), а на пределе 20В - показание "выход за предел измерения".

При отключении разъёма измерительной выносной "головки" прибор автоматически переходит штатный режим мультиметра.

Итого : включаем адаптер - автоматом включается измеритель, выключили - штатный мультиметр. Теперь калибровка , ничего заумного, обычный резистор (не проволочный) подгоняем шкалу. Вот примерно как это выглядело:


Если закоротить щупы , на индикаторе 0.00-0.01, вот одна сотая и есть погрешность в интервале измерения до 1 Ом, значения ЭПС конденсаторов сравнивал с заводским измерителем.

Данный прибор уже 8 лет используется для ремонта телевизоров и показал себя с самой лучшей стороны. В приборе использованы микросхемы КМОП, которые еще у многих пылятся в старых запасах. Это, а также применение ЖК - индикатора ИЖЦ5-4/8 позволило довести потребляемый ток до 10 мА и питать прибор от батареи типа "Крона". Размеры прибора позволяют разместить его в корпусе от мультиметра типа D-830 и т.п. Несмотря на относительно большое количество микросхем, общая стоимость деталей (по прайсам известных Интернет-магазинов) не превышает стоимости только одного современного LCD индикатора типа 8x2 или 16x1 и т.п.

На микросхемах DA1 и DA2 собран преобразователь Емкость-Время (рис.1) - разновидность известного мультивибратора на ОУ, далее будем его называть ПЕВ. На ОУ DA1.1 реализована искусственная “земля” (средняя точка) для аналоговой части. На ОУ DA2 и DA1.2 собран собственно преобразователь. Период следования импульсов определяется выражением T=2*R7*Cx*(1+ln(2*R3/R5)). Из формулы видно, что период мало зависит от дестабилизирующих факторов, таких как напряжение питания, температура (резисторы лучше выбрать термостабильные) и т.д. и может быть достаточно высоким. Амплитуда напряжения на измеряемой емкости составляет Uc=Ud*(R3/(R3+R5)), (где Ud-прямое напряжение на диоде) и не превышает 0.1 Вольт, что позволяет измерять емкость не выпаивая ее из схемы, так как при таком напряжении все полупроводниковые переходы закрыты. Применение в качестве DA2 микросхемы КР544УД2 позволило уменьшить погрешность прибора при измерении малых емкостей. Для защиты DA2 при подключении заряженного конденсатора введены элементы VD3, VD4, R4, причем, диоды выбраны со значительным допустимым однократным импульсным током, а резистор мощностью не менее 0.5 Вт. С вывода 6 DA2 импульсы с периодом, пропорциональным емкости измеряемого конденсатора, поступают на блок управления.

Блок управления реализован на микросхемах DD1 – DD4. Импульсы от ПЕВ, через инвертор на DD3.1, поступают на счетный вход С D-триггера DD2.2. На вход С другого триггера микросхемы поступают секундные импульсы. Логика работы и соединение триггеров между собой таково, что на инверсном выходе DD2.2 присутствует низкий уровень длительностью равной периоду ПЕВ(время счета) и высокий – длительностью, равной примерно 1 сек (время индикации). С прямого же выхода (вывод 1) через элементы C10, R15 короткий импульс сбрасывает счетчики в 0 в начале каждого измерительного периода. Элемент 2ИЛИ-НЕ DD3.4 пропускает импульсы образцовой частоты 32768 Гц на вход счетчика только в течении времени счета. На микросхеме DD1 собран кварцевый генератор образцовой частоты, которая поступает на вывод 6 DD3.4 с выходного буфера (вывод 12). С нее же секундные импульсы поступают с вывода 5 на счетный вход триггера DD2.1, а также снимаются импульсы частотой 63 Гц (рабочая частота индикатора). ЖК индикатор не допускает подачи на него постоянного напряжения, поэтому в данном устройстве на индикатор подается переменное напряжение частотой 63 Гц, а включение сегментов осуществляется фазовым методом (если на сегмент подается сигнал такой же фазы, что и на общий вывод индикатора, то сегмент погашен, если же в противофазе – сегмент включен). Для управления запятыми применены элементы ИСКЛЮЧАЮЩЕЕ-ИЛИ микросхемы DD4. На один из входов элементов DD4.2, DD4.3, DD4.4 подается сигнал 63 Гц (в противофазе к общему индикатора). Каждый элемент, при подаче на другой вход логического 0, повторяет на выходе импульсы (запятая индицируется), а при подаче логического 1 – инвертирует (запятая погашена). DD4.2 управляет запятой 3-го (от старшего к младшему) разряда, которая нормально включена. На элементе DD4.1 реализован RS-триггер, на выходе которого устанавливается лог.1 путем подачи на вывод 5 короткого положительного импульса через элементы C8, R10, VD5 в начале каждого интервала измерения. При переполнении счетчика, отрицательный перепад с выхода старшего разряда счетчика, через инвертор DD3.2 и дифференцирующую цепочку C9, R12 , воздействует на вывод 6 DD4.1 и переводит его выход в 0. Если на месте DD4 будет использоваться микросхема более быстродействующей серии, возможно, для правильной работы DD4.1 придется уменьшить номинал R12 для укорачивания импульса на выводе 6. В случае установления на выводе 6 DD4.1 логического 0, через элемент DD4.4 включается запятая младшего разряда, индицируя переполнение.

На элементах DD4.4, VD6, R14 выполнен индикатор разряда батареи. При уменьшении напряжения ниже 7В, на выводе 12 DD4.4 устанавливается низкий уровень и “зажигаются” запятые 1-го и 2-го разрядов, тем самым сигнализируя о разряде батареи. Элемент DD3.3 играет роль буфера-инвертора.

На микросхемах DD5-DD8 выполнен счетчик импульсов с выводом на ЖК-индикатор. При подаче на вывод 6 счетчика импульсов 63 Гц той же фазы, что и на индикатор, на выходах присутствуют импульсы с фазой, зависящей от включения сегмента и на индикаторе видно соответствующую цифру.

В приборе не предусмотрено переключения пределов измерения, однако, при необходимости измерения емкостей до 10000 мкф, можно навесным монтажом ввести еще один счетчик и переключатель по схеме, изображенной на рис.6. Для этого необходимо удалить перемычку, соединяющую вывод 4 элемента DD3.4 и 4-й же вывод микросхемы DD5 и соответственно между этими точками переключателем S2 подключается счетчик DD9. Вторая группа контактов подачей логического 1 на вывод 9 DD4.2 отключает индикацию запятой 3-го разряда (на печатной плате для этого предусмотрен контакт, обозначенный “х”). Следует отметить, что при измерении емкостей свыше 1000 мкФ, считывание показаний становится не совсем удобным из-за заметности “бега” показаний в период счета. Однако, при этом, показания вполне можно прочесть безошибочно.

Ниже привожу еще один способ увеличения верхнего предела до 10000 мкФ, который, пожалуй, самый простой, какой может быть. Параллельно резистору R7 подключается дополнительный с сопротивлением 85.3 Ома, снижая его сопротивление до 76.7 Ома, то есть в 10 раз. У этого способа свои преимущества и недостатки. Преимущества: простота, минимальные затраты, не меняется максимальное время измерения (0.3 сек). Недостаток один - при таком увеличении предела, становится гораздо заметнее зависимость результата от ESR конденсатора (правда этот недостаток может стать достоинством, если прибор используется для поиска неисправных конденсаторов). Уже ESR, равный 0.5-1 Ом, приводит к серьезному снижению показаний. В данном случае, возможно придется отказаться от защитного резистора R4, что повысит опасность порчи DA2 при подключении к прибору заряженного конденсатора. Выбор способа остается за читателем.

Практически все детали устройства размещены на односторонней печатной плате из фольгированного стеклотекстолита толщиной 1мм размерами 60х95 мм, которая представлена во вложенном файле (также в формате ). Индикатор установлен поверх микросхем К176ИЕ4 на колодках, которые изготовляются из розетки для микросхем с 40 выводами и шагом 2.5 мм. Розетка делится вдоль на 2 части (получаются две узкие однорядные колодки) и каждая укорачивается до 17 контактов. Выводы индикатора формуются в виде буквы “Г” с расстоянием межу загибами, равным 35 мм.

Сначала следует впаять перемычки и дискретные элементы, а потом уже микросхемы и колодки для индикатора. Перемычки изготовляются из луженого провода диаметром 0.3-0.5 мм. Все резисторы, кроме R4, применены типа МЛТ-0.125. Конденсаторы, керамические и электролитические, применены малогабаритные. Стабилитрон можно применить импортный на 3.3 В. Диоды VD1, VD2, VD5 любые из серий КД521, КД522. Диоды VD3,VD4 можно применить любые серий HER10x – HER20x. Из отечественных подойдут КД212, но могут быть сложности с установкой из-за больших габаритов и толщины выводов. Кварцевый резонатор можно применить от неисправных настольных и даже наручных часов. Микросхему DA1, в случае ее отсутствия, можно заменить почти любым сдвоенным ОУ импортного производства, но с изменением рисунка платы (или установить навесным монтажом), например, LM358. DA2 можно заменить на КР544УД1, КР140УД6 с небольшим увеличением погрешности на малых значениях. DD1 вполне можно заменить на К176ИЕ12 с изменением рисунка платы, в крайнем случае три раздельных генератора на 1, 63 и 32768 можно собрать на микросхеме К561ЛН2 по известным схемам на двух инверторах, причем стабильным должен быть только генератор на 32768 Гц, остальные можно применить на RC. К176ТМ2 меняется без изменения рисунка на К176ТМ1 или соответствующие 561 серии. Также К176ЛП2 и К176ЛЕ5 меняются на К561ЛП2 и К561ЛЕ5. Индикатор можно заменить на ИЖЦ21-4/7.

При правильном монтаже, прибор не нуждается в наладке и калибровке. Только необходимо подобрать резисторы R3, R5, R7 с точностью, как минимум, 1 % (R7 можно составить из резисторов 1 кОм и 3.3 кОм, включенных параллельно).

Как говорилось выше, прибор можно разместить в корпусе от мультиметра типа D-830 - D-838, но у маня на тот момент такового не оказалось и корпус был сделан самостоятельно: передняя панель - из 3мм-оргстекла и оклеена самоклейкой, остальной корпус - футляр из латуни толщиной 0.4 мм. Передняя панель вставляется в футляр и фиксируется с боков тонкими "саморезами", вкрученными в предварительно просверленные отверстия. Щуп сделан из двух булавок и представляет собой две пружинистые иголки, припаянные к плате из фольгированного стеклотекстолита.

В заключении, отмечу, что прибор предназначен для измерения емкости, а не ЭПС (ESR), однако, при возрастании эквивалентного последовательного сопротивления, показания прибора резко снижаются (примерно в два раза при сопротивлении 10-15 Ом). Данное свойство прибора позволяет успешно применять его для ремонта радиоаппаратуры – просто бракуем конденсаторы, емкость которых по показаниям прибора более чем в 2 раза ниже номинала, независимо от истинной причины низких показаний.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Блок управления
DD1 Микросхема К176ИЕ5 1 В блокнот
DD2 Микросхема К176ТМ2 1 В блокнот
DD3 Микросхема К176ЛЕ5 1 В блокнот
DD4 Микросхема К176ЛП2 1 В блокнот
VD5 Диод

КД522Б

1 В блокнот
VD6 Стабилитрон

КС133А

1 В блокнот
Z1 Кварцевый резонатор 32768 Гц 1 В блокнот
R8, R15 Резистор 100 кОм 2 В блокнот
R9 Резистор 10 МОм 1 В блокнот
R10 Резистор 27 кОм 1 В блокнот
R11 Резистор 22 кОм 1 В блокнот
R12, R13 Резистор 30 кОм 2 В блокнот
R14 Резистор 1 кОм 1 В блокнот
C6 Конденсатор 51 пФ 1 В блокнот
C7 Конденсатор 220 пФ 1 В блокнот
C8 Конденсатор 1000 пФ 1 В блокнот
C9 Конденсатор 100 пФ 1 В блокнот
C10 Конденсатор 22 пФ 1 В блокнот
C11 Электролитический конденсатор 100мкФ x 16В 1 В блокнот
Счетчик импульсов
DD5-DD8 Микросхема К176ИЕ4 4 В блокнот
HL1 Индикатор ИЖЦ 5-4/8 1 В блокнот
Преобразователь Емкость-Период
DA1 Микросхема К157УД2 1 В блокнот
DA2 Микросхема К544УД2 1

Конденсатор - элемент электрической цепи, состоящий из проводящих электродов (обкладок), разделённых диэлектриком. Предназначен для использования его электрической ёмкости. Конденсатор, ёмкостью С, к которому приложено напряжение U, накапливает заряд Q на одной стороне и - Q - на другой. Ёмкость здесь в фарадах, напряжение - вольтах, заряд - кулоны. Когда ток силой 1 А протекает через конденсатор ёмкостью 1 Ф напряжение изменяется на 1 В за 1 с.

Одна фарада ёмкость огромная, поэтому обычно применяются микрофарады (мкФ) или пикофарады (пФ). 1Ф = 106 мкФ = 109 нФ = 1012 пФ. На практике используются значения от нескольких пикофарад до десятков тысяч микрофарад. Зарядный ток конденсатора отличается от тока через резистор. Он зависит не от величины напряжения, а от скорости изменения последнего. По этой причине для измерения ёмкости требуются специальные схемные решения, применительно к особенностям конденсатора.

Обозначения на конденсаторах

Проще всего определить значение ёмкости по маркировке, нанесённой на корпус конденсатора.

Электролитический (оксидный) полярный конденсатор, ёмкостью 22000 мкФ, рассчитанный на номинальное напряжение 50 В постоянного тока. Встречается обозначение WV - рабочее напряжение. В маркировке неполярного конденсатора обязательно указывается возможность работы в цепях переменного тока высокого напряжения (220 VAC).

Плёночный конденсатор ёмкостью 330000 пФ (0.33 мкФ). Значение в этом случае, определяется последней цифрой трёхзначного числа, обозначающей количество нолей. Далее буквой указана допустимая погрешность, здесь - 5 %. Третьей цифрой может быть 8 или 9. Тогда первые две умножаются на 0.01 или 0.1 соответственно.

Ёмкости до 100 пФ маркируются, за редкими исключениями, соответствующим числом. Этого достаточно для получения данных об изделии, так маркируется подавляющее число конденсаторов. Производитель может придумать свои, уникальные обозначения, расшифровать которые не всегда удаётся. Особенно это относится к цветовому коду отечественной продукции. По стёртой маркировке узнать ёмкость невозможно, в такой ситуации не обойтись без измерений.

Вычисления с помощью формул электротехники

Простейшая RC - цепь состоит из параллельно включённых резистора и конденсатора.

Выполнив математические преобразования (здесь не приводятся), определяются свойства цепи, из которых следует, что если заряженный конденсатор подключить к резистору, то он будет разряжаться так, как показано на графике.

Произведение RC называют постоянной времени цепи. При значениях R в омах, а C - в фарадах, произведение RC соответствует секундам. Для ёмкости 1 мкФ и сопротивления 1 кОм, постоянная времени - 1 мс, если конденсатор был заряжен до напряжения 1 В, при подключении резистора ток в цепи будет 1 мА. При зарядке напряжение на конденсаторе достигнет Vo за время t ≥ RC. На практике применяется следующее правило: за время 5 RC, конденсатор зарядится или разрядится на 99%. При других значениях напряжение будет изменяться по экспоненциальному закону. При 2.2 RC это будет 90 %, при 3 RC - 95 %. Этих сведений достаточно для расчёта ёмкости с помощью простейших приспособлений.

Схема измерения

Для определения ёмкости неизвестного конденсатора следует включить его в цепь из резистора и источника питания. Входное напряжение выбирается несколько меньшим номинального напряжения конденсатора, если оно неизвестно - достаточно будет 10–12 вольт. Ещё необходим секундомер. Для исключения влияния внутреннего сопротивления источника питания на параметры цепи, на входе надо установить выключатель.

Сопротивление подбирается экспериментально, больше для удобства отсчёта времени, в большинстве случаев в пределах пяти - десяти килоом. Напряжение на конденсаторе контролируется вольтметром. Время отсчитывается с момента включения питания — при зарядке и выключении, если контролируется разряд. Имея известные величины сопротивления и времени, по формуле t = RC вычисляется ёмкость.

Удобнее отсчитывать время разрядки конденсатора и отмечать значения в 90 % или 95 % от начального напряжения, в этом случае расчёт ведётся по формулам 2.2t = 2.2RC и 3t = 3RC. Таким способом можно узнать ёмкость электролитических конденсаторов с точностью, определяемой погрешностями измерений времени, напряжения и сопротивления. Применение его для керамических и других малой ёмкости, с использованием трансформатора 50 Hz, вычислением емкостного сопротивления - даёт непрогнозируемую погрешность.

Измерительные приборы

Самым доступным методом замера ёмкости является широко распространённый мультиметр с такой возможностью.

В большинстве случаев, подобные устройства имеют верхний предел измерений в десятки микрофарад, что достаточно для стандартных применений. Погрешность показаний не превышает 1% и пропорциональна ёмкости. Для проверки достаточно вставить выводы конденсатора в предназначенные гнёзда и прочитать показания, весь процесс занимает минимум времени. Такая функция присутствует не у всех моделей мультиметров, но встречается часто с разными пределами измерений и способами подключения конденсатора. Для определения более подробных характеристик конденсатора (тангенса угла потерь и прочих), используются другие устройства, сконструированные для конкретной задачи, не редко являются стационарными приборами.

В схеме измерения, в основном, реализован мостовой метод. Применяются ограничено в специальных профессиональных областях и широкого распространения не имеют.

Самодельный С - метр

Не принимая во внимание разные экзотические решения, такие как баллистический гальванометр и мостовые схемы с магазином сопротивлений, изготовить простой прибор или приставку к мультиметру по силам и начинающему радиолюбителю. Широко распространённая микросхема серии 555 вполне подходит для этих целей. Это таймер реального времени со встроенным цифровым компаратором, в данном случае используется как генератор.

Частота прямоугольных импульсов задаётся выбором резисторов R1–R8 и конденсаторов С1, С2 переключателем SA1 и равняется: 25 kHz, 2.5 kHz, 250 Hz, 25Hz - соответственно положениям переключателя 1, 2, 3 и 4–8. Конденсатор Сх заряжается с частотой следования импульсов через диод VD1, до фиксированного напряжения. Разряд происходит во время паузы через сопротивления R10, R12–R15. В это время образуется импульс длительностью, зависимой от емкости Сх (больше ёмкость - длиннее импульс). После прохождения интегрирующей цепи R11 C3 на выходе появляется напряжение, соответствующее длине импульса и пропорциональное величине ёмкости Сх. Сюда и подключается (Х 1) мультиметр для измерения напряжения на пределе 200 mV. Положения переключателя SA1 (начиная с первого) соответствуют пределам: 20 пФ, 200 пФ, 2 нФ, 20 нФ, 0.2 мкФ, 2 мкФ, 20 мкФ, 200 мкФ.

Наладку конструкции необходимо делать с прибором, который будет применяться в дальнейшем. Конденсаторы для наладки надо подобрать с ёмкостью, равной поддиапазонам измерений и как можно точнее, от этого будет зависеть погрешность. Отобранные конденсаторы поочерёдно подключаются к Х1. В первую очередь настраиваются поддиапазоны 20 пФ–20 нФ, для этого соответствующими подстроечными резисторами R1, R3, R5, R7 добиваются соответствующих показаний мультиметра, возможно придётся несколько изменить номиналы последовательно включённых сопротивлений. На других поддиапазонах (0.2 мкФ–200 мкФ) калибровка проводится резисторами R12–R15.

При выборе источника питания следует учитывать, что амплитуда импульсов напрямую зависит от его стабильности. Интегральные стабилизаторы серии 78хх вполне здесь применимы Схема потребляет ток не более 20–30 миллиампер и конденсатора фильтра ёмкостью 47–100 микрофарад будет достаточно. Погрешность измерений, при соблюдении всех условий, может составить около 5 %, на первом и последнем поддиапазонах, по причине влияния ёмкости самой конструкции и выходного сопротивления таймера, возрастает до 20 %. Это надо учитывать при работе на крайних пределах.

Конструкция и детали

R1, R5 6,8k R12 12k R10 100k C1 47nF

R2, R6 51k R13 1,2k R11 100k C2 470pF

R3, R7 68k R14 120 C3 0,47mkF

R4, R8 510k R15 13

Диод VD1 - любой маломощный импульсный, конденсаторы плёночные, с малым током утечки. Микросхема - любая из серии 555 (LM555, NE555 и другие), русский аналог - КР1006ВИ1. Измерителем может быть практически любой вольтметр с высоким входным сопротивлением, под который проведена калибровка. Источник питания должен иметь на выходе 5–15 вольт при токе 0.1 А. Подойдут стабилизаторы с фиксированным напряжением: 7805, 7809, 7812, 78Lxx.

Вариант печатной платы и расположение компонентов

Видео по теме

Похожие статьи