Конфигурирование и компиляция ядра Linux. Собираем ядро Linux

24.06.2019

Пересборка ядра Linux дело очень интересное и почему-то часто отпугивает новичков. Но ничего сложного в этом нет, и скомпилировать ядро Linux бывает не сложнее, чем собрать (скомпилировать) любую другую программу из исходников. Пересборка ядра может понадобиться, когда вам требуются какие-нибудь функции, не включенные в текущее ядро, или же, наоборот, вы хотите что-то отключить. Все дальнейшие действия мы будем выполнять в Ubuntu Linux.

Установка утилит

Для настройки и сборки ядра Linux вам потребуется установить несколько пакетов, которые понадобятся для сборки и настройки ядра:  kernel-package , build-essential , libncurses-dev . Сделать это можно командой:

sudo apt-get install build-essential kernel-package libncurses-dev

Скачиваем исходный код ядра

Теперь нужно скачать исходный код ядра. Мы будем скачивать ядро для Ubuntu. Вы можете скачать определенную версию ядра, например, ту, которую вы в данный момент используете или же скачать самую последнюю версию. Для того, чтобы определить версию ядра Linux, которую вы используете, выполните команду uname с параметром -r:

Uname -r

Вывод команды будет примерно следующим:

$uname -r 2.6.27-11-generic

Имя пакета, содержащего исходные коды ядра обычно имеет следующий вид: linux-source-Версия. Например, для ядра версии 2.6.24: linux-source-2.6.24. Самая последняя версия ядра в репозиториях Ubuntu называется просто linux-source, без указания версии на конце. Для установки исходных кодов последней версии ядра Ubuntu Linux, выполните команду:

sudo apt-get install linux-source

Эта команда скачивает исходники ядра и размещает их в директории /usr/src . На момент написания заметки последняя версия ядра, которая была скачана — 2.6.27, ее мы и будем использовать. Если мы теперь перейдем в директорию /usr/src и выполним команду ls , то увидим, что среди файлов присутствует файл linux-source-2.6.27.tar.bz2. Это и есть исходные коды ядра Linux (ядра Ubuntu).

Распаковываем исходный код ядра

Перейдем в директорию /usr/src и разархивируем ядро. Для этого выполните следующие команды:

Cd /usr/src sudo tar xjf linux-source-2.6.27.tar.bz2 sudo ln -s linux-source-2.6.27 linux

Конфигурация ядра

Теперь перейдем к конфигурированию ядра. Чтобы не создавать конфигурацию с нуля, возьмем за основу конфигурацию ядра, которая в данный момент используется. Получить текущую конфигурацию можно выполнив команду make oldconfig . Выполните в терминале:

Cd /usr/src/linux sudo make oldconfig

В результате выполнения команды make oldconfig создастся файл.config , содержащий параметры конфигурации ядра.

Получить справку по всем параметрам make для ядра Linux вы можете, выполнив команду make help .

Для изменения конфигурации ядра мы воспользуемся консольной утилитой menuconfig . Для ее запуска выполните:

Sudo make menuconfig

Перед вами появится интерфейс, в котором вы можете включать или отключать определенные опции ядра:

Для примера я включу опцию «NTFS write support». Для этого, нажимая кнопку Вниз, найдите пункт «File systems» и нажмите Enter .

Вы окажетесь в меню настройки файловых систем. Найдите в этом списке пункт «DOS/FAT/NT Filesystems» и нажмите Enter .

Перейдите к пункту «NTFS write support» и нажмите Пробел, рядом с пунктом появится звездочка, означающая, что данная опция будет включена в ядро.

Теперь выберите «Exit» (нажав кнопку Вправо и затем Enter) и выйдите из утилиты. Перед выходом из утилиты выскочит сообщение с вопросом — сохранить проделанные изменения, выберите Yes.

Компиляция ядра

Пришло время скомпилировать ядро с теми изменениями, которые мы внесли на предыдущем шаге. Для начала выполним команду, которая удалит файлы (если они имеются), оставшиеся от предыдущей компиляции:

Sudo make-kpkg clean

Наконец, чтобы запустить компиляцию ядра, выполним команду:

Sudo make-kpkg --initrd --append-to-version=-mykernel kernel_image kernel_headers

Ключ -append-to-version используется, чтобы добавить к имени файла образа ядра, который мы получим после компиляции, строку -mykernel , чтобы было проще идентифицировать свое ядро. Вместо -mykernel вы можете использовать любой префикс.

Компиляция ядра занимает довольно много времени и может длиться от нескольких десятков минут до нескольких часов, в зависимости от мощности вашего компьютера.

Установка (инсталляция) ядра

После компиляции ядра вы получили на выходе два файла: linux-image-2.6.27.18-mykernel_2.6.27.18-mykernel-10.00.Custom_i386.deb, linux-headers-2.6.27.18-mykernel_2.6.27.18-mykernel-10.00.Custom_i386.deb. Мы воспользуемся командной dpkg -i , которая автоматически установит ядро и пропишет его в ваш загрузчик GRUB (в файл  /boot/grub/menu.lst). Отмечу, что ядро будет установлено, как ядро по умолчанию, поэтому если оно у вас не загрузится вам нужно будет загрузиться, используя ваше предыдущее ядро (оно должно быть в списке меню GRUB при загрузке компьютера) и вручную изменять файл menu.lst . Итак, для установки ядра выполните команды:

Dpkg -i linux-image-2.6.27.18-mykernel_2.6.27.18-mykernel-10.00.Custom_i386.deb dpkg -i linux-headers-2.6.27.18-mykernel_2.6.27.18-mykernel-10.00.Custom_i386.deb

Запуск системы с новым ядром

Проверим работоспособность системы с новым ядром. Перезагрузите компьютер. В меню загрузчика GRUB вы должны будете увидеть новый пункт, соответствующей вашему новому ядру, которое должно загрузиться по умолчанию. Если все пройдет успешно, то система запустится с новым ядром.

Ядро Linux содержит более 13 миллионов строк кода и является одним из самых крупных проектов с открытым исходным кодом в мире. Так что такое ядро Linux и для чего оно используется?

Ядро - это самый низкий уровень программного обеспечения, которое взаимодействует с аппаратными средствами компьютера. Оно отвечает за взаимодействие всех приложений, работающих в пространстве пользователя вплоть до физического оборудования. Также позволяет процессам, известным как сервисы получать информацию друг от друга с помощью системы IPC.

Виды и версии ядра

Что такое ядро Linux вы уже знаете, но какие вообще бывают виды ядер? Есть различные способы и архитектурные соображения при создании ядер с нуля. Большинство ядер могут быть одного из трех типов: монолитное ядро, микроядро, и гибрид. Ядро Linux представляет собой монолитное ядро, в то время как ядра Windows и OS X гибридные. Давайте сделаем обзор этих трех видов ядер.

Микроядро

Микроядра реализуют подход, в котором они управляют только тем, чем должны: процессором, памятью и IPC. Практически все остальное в компьютере рассматривается как аксессуары и обрабатывается в режиме пользователя. Микроядра имеют преимущество в переносимости, они могут использоваться на другом оборудовании, и даже другой операционной системе, до тех пор, пока ОС пытается получить доступ к аппаратному обеспечению совместимым образом.

Микроядра также имеют очень маленький размер и более безопасны, поскольку большинство процессов выполняются в режиме пользователя с минимальными привилегиями.

Плюсы

  • Портативность
  • Небольшой размер
  • Низкое потребление памяти
  • Безопасность

Минусы

  • Аппаратные средства доступны через драйверы
  • Аппаратные средства работают медленнее потому что драйверы работают в пользовательском режиме
  • Процессы должны ждать свою очередь чтобы получить информацию
  • Процессы не могут получить доступ к другим процессам не ожидая

Монолитное ядро

Монолитные ядра противоположны микроядрам, потому что они охватывают не только процессор, память и IPC, но и включают в себя такие вещи, как драйверы устройств, управление файловой системой, систему ввода-вывода. Монолитные ядра дают лучший доступ к оборудованию и реализуют лучшую многозадачность, потому что если программе нужно получить информацию из памяти или другого процесса, ей не придется ждать в очереди. Но это и может вызвать некоторые проблемы, потому что много вещей выполняются в режиме суперпользователя. И это может принести вред системе при неправильном поведении.

Плюсы:

  • Более прямой доступ к аппаратным средствам
  • Проще обмен данными между процессами
  • Процессы реагируют быстрее

Минусы :

  • Большой размер
  • Занимает много оперативной памяти
  • Менее безопасно

Гибридное ядро

Гибридные ядра могут выбирать с чем нужно работать в пользовательском режиме, а что в пространстве ядра. Часто драйвера устройств и файловых систем находятся в пользовательском пространстве, а IPC и системные вызовы в пространстве ядра. Это решение берет все лучшее из обоих предыдущих, но требует больше работы от производителей оборудования. Поскольку вся ответственность за драйвера теперь лежит на них.

Плюсы

  • Возможность выбора того что будет работать в пространстве ядра и пользователя
  • Меньше по размеру чем монолитное ядро
  • Более гибкое

Минусы

  • Может работать медленнее
  • Драйверы устройств выпускаются производителями

Где хранятся файлы ядра?

Где находится ядро Linux? Файлы ядра Ubuntu или любого другого Linux-дистрибутива находятся в папке /boot и называются vmlinuz-версия. Название vmlinuz походит с эпохи Unix. В шестидесятых годах ядра привыкли называть просто Unix, в 90-х годах Linux ядра тоже назывались - Linux.

Когда для облегчения многозадачности была разработана виртуальная память, перед именем файла появились буквы vm, чтобы показать что ядро поддерживает эту технологию. Некоторое время ядро называлось vmlinux, но потом образ перестал помещаться в память начальной загрузки, и был сжат. После этого последняя буква x была изменена на z, чтобы показать что использовалось сжатие zlib. Не всегда используется именно это сжатие, иногда можно встретить LZMA или BZIP2, поэтому некоторые ядра называют просто zImage.

Нумерация версии состоит из трех цифр, номер версии ядра Linux, номер вашей версии и патчи или исправления.

В паке /boot можно найти не только ядро Linux, такие файлы, как initrd.img и system.map. Initrd используется в качестве небольшого виртуального диска, который извлекает и выполняет фактический файл ядра. Файл System.map используется для управления памятью, пока еще ядро не загрузилось, а конфигурационные файлы могут указывать какие модули ядра включены в образ ядра при сборке.

Архитектура ядра Linux

Так как ядро Linux имеет монолитную структуру, оно занимает больше и намного сложнее других типов ядер. Эта конструктивная особенность привлекла много споров в первые дни Linux и до сих пор несет некоторые конструктивные недостатки присущие монолитным ядрам.

Но чтобы обойти эти недостатки разработчики ядра Linux сделали одну вещь - модули ядра, которые могут быть загружены во время выполнения. Это значит что вы можете добавлять и удалять компоненты ядра на лету. Все может выйти за рамки добавления функциональных возможностей аппаратных средств, вы можете запускать процессы сервера, подключать виртуализацию, а также полностью заменить ядро без перезагрузки.

Представьте себе возможность установить пакет обновлений Windows без необходимости постоянных перезагрузок.

Модули ядра

Что, если бы Windows уже имела все нужные драйвера по умолчанию, а вы лишь могли включить те, которые вам нужны? Именно такой принцип реализуют модули ядра Linux. Модули ядра также известные как загружаемые модули (LKM), имеют важное значение для поддержки функционирования ядра со всеми аппаратными средствами, не расходуя всю оперативную память.

Модуль расширяет функциональные возможности базового ядра для устройств, файловых систем, системных вызовов. Загружаемые модули имеют расширение.ko и обычно хранятся в каталоге /lib/modules/. Благодаря модульной природе вы можете очень просто настроить ядро путем установки и загрузки модулей. Автоматическую загрузку или выгрузку модулей можно настроить в конфигурационных файлах или выгружать и загружать на лету, с помощью специальных команд.

Сторонние, проприетарные модули с закрытым исходным кодом доступны в некоторых дистрибутивах, таких как Ubuntu, но они не поставляются по умолчанию, и их нужно устанавливать вручную. Например, разработчики видеодрайвера NVIDIA не предоставляют исходный код, но вместо этого они собрали собственные модули в формате.ko. Хотя эти модули и кажутся свободными, они несвободны. Поэтому они и не включены во многие дистрибутивы по умолчанию. Разработчики считают что не нужно загрязнять ядро несвободным программным обеспечением.

Теперь вы ближе к ответу на вопрос что такое ядро Linux. Ядро не магия. Оно очень необходимо для работы любого компьютера. Ядро Linux отличается от OS X и Windows, поскольку оно включает в себя все драйверы и делает много вещей поддерживаемых из коробки. Теперь вы знаете немного больше о том, как работает ваше программное обеспечение и какие файлы для этого используются.

Состоящее почти из 20 миллионов строк кода ядро Linux является одним из самых крупных Opensource проектов в мире.

Что такое ядро

Ядро представляет собой нижний уровень программного обеспечения, которое взаимодействует с оборудованием компьютера. Оно отвечает за взаимодействие всех приложений, которые работают в т.н. «пользовательском режиме» с физическим оборудованием и позволяет процессам передавать информацию друг другу с помощью (IPC ).

Типы ядер

Имеется три основных типа ядер — монолитные (monolithic ), микроядра (microkernel ) и гибридные (hybrid ).

К примеру Linux является монолитным ядром, тогда как OS X и Windows используют гибридные ядра.

Microkernel

Микроядра занимаются управлением только CPU, памятью и IPC. Практически все остальное в компьютере может рассматриваться как дополнительное оборудование и может обслуживаться в пользовательском режиме. Микроядра имеют большую переносимость, т.к. вам не приходиться беспокоиться если вы задумали сменить видеокарту или даже всю операционную систему — если новая ОС работает с оборудованием так же, как и предыдущее. Микроядра так же требуют меньше дискового простанства и RAM. Кроме того — они могут считаться более безопасными в силу того, что большая часть процессов работает в режиме пользователя и не имеет доступа к критически важным частям ситемы.

Плюсы

  • переносимость
  • меньший размер занимаемой RAM и на жестком диске
  • безопасность

Минусы

  • в целом система может работать медленнее из-за дополнительных слоев программной абстракции между ядром и оборудованием
  • процессы могут тратить время на ожидание в очереди для получения информации

Monolithic ядра

Монолитные ядра являются противоположностью микроядрам, так как охватывают не только управление процессором, памятью и IPC — но так же включают в себя драйвера устройсв, управление файловыми системами и системными вызовами. Монолитные ядра имеют преимущество в скорости доступа к оборудованию и работе в многозадачном режиме, так как если программе требуется получить информацию из памяти или от другого процесса — она может получить его напрямую и не тратить время в очереди на ожидание ответа. С другой стороны это вызывает и определенные сложности, так как большее количество процессов работает в режиме ядра, что может привести к краху всей системы из-за проблем с одним из них.

Плюсы

  • более быстрый доступ процессов к оборудованию
  • проще связь между самими процессами
  • проще реализация поддержки оборудования без необходимости установки дополнительных драйверов
  • процессы взаимодействуют быстрее, так как не требуется ожидание в очереди

Минусы

  • больший объем занимаемой памяти и жесткого диска
  • больше проблем с безопасностью

Гибридные ядра

Гибридные ядра ядра могут сами определять — какую часть выполнять в режиме пользователя, а какую — в режиме ядра. Как правило — в режиме пользователя работают драйвера устройств и системы ввода-вывода, тогда как системные вызовы обслуживаются в режиме ядра. Этот подход сочетает в себе преимущества как монолитных, так и микроядер — однако и требует больше внимания со стороны производителей оборудования, так как работа драйверов зависят от них. Кроме того — этот подход может иметь некоторые проблемы быстродействия, унаследованные от микроядерной архитектуры.

Плюсы

  • разработчик может выбирать что запускать в режиме ядра — а что в режиме пользователя
  • меньший размер по сравнению с монолитными ядрами
  • более гибкое, чем другие типы

Минусы

  • возможны недостатки в производительности
  • установка драйверов устройств зависит от пользователя и производителя оборудования

Файлы ядра Linux

В большинстве GNU/Linux -систем файлы ядра располагаются в каталоге /boot , например CentOS 6:

# ls -l /boot/ | grep linu -rwxr-xr-x 1 root root 4221232 Dec 15 23:48 vmlinuz-2.6.32-573.12.1.el6.x86_64 -rwxr-xr-x 1 root root 4221968 Feb 10 01:15 vmlinuz-2.6.32-573.18.1.el6.x86_64 -rwxr-xr-x 1 root root 4221776 Aug 14 2015 vmlinuz-2.6.32-573.3.1.el6.x86_64 -rwxr-xr-x 1 root root 4220144 Sep 23 01:29 vmlinuz-2.6.32-573.7.1.el6.x86_64 -rwxr-xr-x 1 root root 4220368 Nov 10 20:31 vmlinuz-2.6.32-573.8.1.el6.x86_64

Файл с vmlinuz в имени и есть файл ядра. Имя vmlinuz пришло из мира UNIX , в котором c 60-годов файл ядра назывался просто unix . Когда Linus Torvalds начал разработку Linux в 90-х — он назвал его просто linux .

Когда появилась реализация виртуальной памяти — к имени linux была добавлена приставка « vm » (virtual memory ). Так какое-то время файл ядра назывался просто vmlinux , однако рамзер файла постоянно увеличивался и со временем его стали сжимать а последняя буква в имени была заменена c x на z (zlib compression ). Ядро так же зачастую сжимается с помощью LZMA или BZIP2 и некоторые ядра называются просто zImage .

В каталоге /boot так же находятся файлы initrd.img-version (или initramfs-version), System.map-version и config-version . Файл initrd.img-version используется для первоначальной загрузки системы, во время которой распаковывается и загружается само ядро. Файл System.map используется для управления памятью перед загрузкой смого ядра, а файл config содержит в себе параметры ядра и список модулей для загрузки в ядро во время его компиляции.

Архитектура ядра Linux

Так как ядро Linux является монолитным — оно является самым большим и сложным по сравнению с другими типами ядер. Что бы нивелировать эти недостатки — разработчики ядра добавили возможность работы ядра с модулями, которые могут быть загружены в него во время работы без необходимости перезагрузки всей системы.

Модули ядра Linux

Что если бы Windows изначально содержило в себе все необходимые драйвера, и все что требовалось бы от пользователя — это просто включить некоторые из них?

Именно так и работают модули Linux , которые так же называют (LKM ) и которые жизненно необходимы для того, что бы ядро имело возможность взаимодейтсвовать со всем оборудованием компьютера и при этом не занимать всю его память.

Как правило — модули расширяют возможности ядра для работы с устройствами, файловыми системами и системными вызовами. LKM имеют рсширение файлов.ko:

# find /lib/modules/2.6.32-573.18.1.el6.x86_64/kernel/ -name "*.ko" -type f | wc -l 2033

Благодаря модульной структуре — вы можете настраивать ядро под себя, выбирая только необходимые модули в menuconfig , отредактировав файл /boot/config* или загружая и выгружая модули прямо во время работы с помощью утилит типа modprobe , insmod и rmmod .

Ядро не является чем-то волшебным, но является жизненно необходимым для работы любого компьютера. Ядро Linux отличается от ядер в Windows или OS X системах, так как включает в себя драйвера на уровне ядра системы и поддерживает многие возможности «из коробки».

В многочисленном семействе операционных систем на основе GNU/Linux. Наверняка вы слышали, что оные коды являются открытыми, свободно распространяемыми и бесплатными. Дескать, бери кто хочешь, но только условия лицензии GPL соблюдай, что совсем нетрудно. Однако мало кто объясняет достаточно внятно, в чём же суть данного явления, в чём его смысл. Поэтому попытку такого объяснения осуществим мы.

Суть вкратце

Всё началось в 1991-м, когда финский студент Линус Торвальдс выложил в открытый доступ коды ядра новой операционной системы Linux. Почему в открытый? Потому что поддерживал . Но это, вы, пожалуй, и так знаете (или легко узнаете). Мы же обратим внимание на моменты, которые требуют чёткой классификации.

Linux

Linux - это не операционная система, а всего лишь ядро. Набор программных решений, необходимых для запуска компьютера и функционирования его компонентов («железа»), база для функционирования других программ.

GNU

GNU - комплект простых приложений, существовавший ещё до появления вышеуказанного ядра. Эти программы позволяют человеку осуществлять хоть какое-то взаимодействие с компьютером, а не просто пялиться в экран. Исходные коды тоже открыты, естественно.

GNU/Linux - это уже ОС, а не просто ядро. Вместо GNU может быть что-то другое, например, Dalvik в Android .

Драйверы

Техника развивается, растёт количество компьютерных «железок», оборудование эволюционирует. И каждому изделию для работы нужен драйвер. Так вот, некоторые драйверы прикручиваются прямо к ядру. Если они свободные (Свободное ПО), как GNU и Linux, то и коды непременно открыты.

Ну а когда подходящих свободных драйверов нет, тогда уж ничего не поделаешь, доводится устанавливать проприетарные. Открыты ли их коды, сие зависит только от производителей «железа».

Приложения

Пользовательские приложения, относящиеся к категории Open Source, нередко изготавливаются в вариантах для разных операционных систем. Они не являются частью Linux. Правда, некоторые бывают стандартными для того или иного дистрибутива или графической оболочки, но в состав ядра не входят.

Естественно, открыты коды всех вариантов - для всех поддерживаемых операционных систем. Та же самая ситуация - с различными утилитами.

Кто это изготавливает

Ядро Linux совершенствуется группой энтузиастов. Иногда сам Линус Торвальдс принимает участие. Код ядра, запакованный в архив, можно скачать с kernel.org с целью последующей самостоятельной компиляции.

Драйверы, если они свободные, тоже нередко изготавливаются сообществами. Для принтера, сканера, видеокарты, адаптера Wi-Fi... В общем, много для чего.

К примеру, пакет Gutenprint, являющийся целым набором драйверов для множества моделей принтеров. Причём, качество печати нередко сравнимо с показателями, выдаваемыми при использовании «родных» драйверов от производителей.

Иногда производители «железки» сами открывают код под какой-нибудь подходящей лицензией, той же GPL или BSD. Такие события обычно вызывают неописуемую радость сторонников Open Source.

Как вы уже догадываетесь, пользовательские приложения тоже создаются либо сообществами, либо энтузиастами-одиночками. Однако и коммерческие конторы любят рекламировать себя, давая народонаселению часть своей продукции в виде Свободного ПО. Яркий пример: офисный пакет OpenOffice.org долгое время выпускался компанией Oracle.

Более того, некоторые фирмы даже целые дистрибутивы делают. Red Hat, SuSE, Xandros берут деньги за бинарные сборки, готовые к употреблению, но коды прятать не имеют право. То есть, эти коды, как бы их ни переработали, должны оставаться открытыми. Таково требование лицензии GPL.

Кто этим пользуется

Смотрит программист на софт и думает: «Хорошая штука, но можно сделать лучше!» Качает с сайта разработчика архив с кодом - и совершенствует. К нему присоединяется группа специалистов, пожелавших участвовать, - и рождается новый проект.

Так появляются «форки» (от английского «fork», что в данном случае переводится как «ответвление»). Новые программы на кодовой базе уже существующих.

К примеру, из хорошего аудиоплеера Amarok сделан ещё лучший - Clementine. А из пакета офисных приложений OpenOffice.org - LibreOffice, бурно развивающийся и весьма перспективный.

Так вот, по такому принципу клонируются целые операционные системы. Из исходных кодов платной Red Hat Enterprise Linux компилируется бесплатная ОС CentOS . Конечно, боссы компании Red Hat наверняка кусают локти от досады, но сделать ничего не могут, поскольку исходный код им не принадлежит.

Впрочем, в данном случае доработка сводится преимущественно к вырезанию зарегистрированных логотипов, но без обязательной открытости кода само существование CentOS было бы невозможно в принципе.

Заключение

Открытость кода - основополагающая концепция и Linux, в частности, и всего Свободного ПО в целом. Коды можно использовать для собственных проектов, усилиями сообщества проверять на безвредность, изучать, повышать свою квалификацию, участвуя в разработке, улучшать и оказывать помощь людям в их благородном деле.

Нет бинарной сборки важного для вас софта для конкретного дистрибутива GNU/Linux ? Драйвер не входит в состав ядра? Взяли архив с исходным кодом, распаковали, почитали инструкции по сборке, откомпилировали, установили - и пользуйтесь. Вы не зависите от производителя, не привязаны к конкретной операционной системе - это и есть настоящая свобода.

Предыдущие публикации:

История и архитектурная организация

Поскольку цель данной статьи - познакомить вас с ядром Linux и дать обзор его архитектуры и основных компонентов, давайте начнем с краткого обзора истории ядра Linux, затем рассмотрим архитектуру ядра Linux "с высоты птичьего полета", и, наконец, обсудим его основные подсистемы. Ядро Linux насчитывает свыше шести миллионов строк, поэтому данное введение не может быть исчерпывающим. Для получения более подробной информации пользуйтесь ссылками на дополнительные ресурсы.

Краткий обзор истории Linux

Хотя Linux, по всей видимости, является самой популярной операционной системой с открытым исходным кодом, на самом деле ее история в сравнении с другими операционными системами относительно коротка. На заре компьютерной эры программисты разрабатывали свои программы для "голой" аппаратуры, используя языки, понятные для этой аппаратуры. В отсутствие операционной системы использовать всю большую и дорогую вычислительную машину в каждый конкретный момент времени могло только одно приложение (и один пользователь). Первые операционные системы были разработаны в 1950-е годы, чтобы облегчить жизнь разработчиков. В качестве примера можно назвать General Motors Operating System (GMOS), разработанную для IBM 701, и FORTRAN Monitor System (FMS), созданную North American Aviation для IBM 709.

В 1960-е годы в Массачусетском Технологическом институте (MIT) и в ряде компаний была разработана экспериментальная операционная система Multics (Multiplexed Information and Computing Service) для машины GE-645. Один из разработчиков этой ОС, компания AT&T, отошла от Multics и в 1970 году разработала свою собственную систему Unics. Вместе с этой ОС поставлялся язык C. При этом C был разработан и написан так, чтобы обеспечить переносимость разработки операционной системы.

Двадцать лет спустя Эндрю Танненбаум (Andrew Tanenbaum) создал микроядерную версию UNIX® под названием MINIX (minimal UNIX), которая могла работать на небольших персональных компьютерах. Эта операционная система с открытым исходным кодом вдохновила Линуса Торвальдса (Linus Torvalds) на разработку первой версии Linux в начале 1990-х (см. Рис. 1).

Рис. 1. Краткая история основных выпусков ядра Linux

Linux быстро превратился из инициативы энтузиаста-одиночки во всемирный проект, в котором участвуют тысячи разработчиков. Одним из важнейших решений в судьбе Linux стало принятие лицензии GNU General Public License (GPL). GPL защитила ядро Linux от коммерческой эксплуатации и одновременно открыла путь к использованию разработок сообщества пользователей проекта GNU, основанного Ричардом Столлменом (Richard Stallman), объемы кода которого значительно превосходят даже объем ядра Linux. Это позволило использовать в Linux такие полезные приложения, как комплекс компиляторов GNU Compiler Collection (GCC) и различные командные оболочки.

Введение в ядро Linux

Перейдем к общему обзору архитектуры операционной системы GNU/Linux. Операционную систему можно условно разделить на два уровня, как показано на Рис. 2.

Рис. 2. Фундаментальная архитектура операционной системы GNU/Linux

На верхнем уровне находится пользовательское пространство (пространство приложений). Здесь исполняются приложения пользователя. Под пользовательским пространством располагается пространство ядра. Здесь функционирует ядро Linux.

Имеется также библиотека GNU C (glibc). Она предоставляет интерфейс системных вызовов, который обеспечивает связь с ядром и дает механизм для перехода от приложения, работающего в пространстве пользователя, к ядру. Это важно, поскольку ядро и пользовательское приложение располагаются в разных защищенных адресных пространствах. При этом, в то время как каждый процесс в пространстве пользователя имеет свое собственное виртуальное адресное пространство, ядро занимает одно общее адресное пространство. Более подробную информацию можно найти в литературе, ссылки на которую приведены в разделе " ".

Ядро Linux можно, в свою очередь, разделить на три больших уровня. Наверху располагается интерфейс системных вызовов, который реализует базовые функции, например, чтение и запись. Ниже интерфейса системных вызовов располагается код ядра, точнее говоря, архитектурно-независимый код ядра. Этот код является общим для всех процессорных архитектур, поддерживаемых Linux. Еще ниже располагается архитектурно-зависимый код, образующий т.н. BSP (Board Support Package - пакет поддержки аппаратной платформы). Этот код зависит от процессора и платформы для конкретной архитектуры.

Свойства ядра Linux

Обсуждая архитектуру большой и сложной системы, можно рассматривать ее со многих разных точек зрения. Одна из целей архитектурного анализа может состоять в том, чтобы лучше понять исходный код системы. Именно этим мы здесь и займемся.

В ядре Linux реализован целый ряд важных архитектурных элементов. И на самом общем, и на более детальных уровнях ядро можно подразделить на множество различных подсистем. С другой стороны, Linux можно рассматривать как монолитное целое, поскольку все базовые сервисы собраны в ядре системы. Такой подход отличается от архитектуры с микроядром, когда ядро предоставляет только самые общие сервисы, такие как обмен информацией. ввод/вывод, управление памятью и процессами, а более конкретные сервисы реализуются в модулях, подключаемых к уровню микроядра. Каждая из этих точек зрения имеет свои достоинства, но я здесь не буду вдаваться в это обсуждение.

С течением времени ядро Linux стало более эффективным с точки зрения использования памяти и процессорных ресурсов и приобрело исключительную стабильность. Однако самый интересный аспект Linux, учитывая размер и сложность этой системы - это ее переносимость. Linux можно откомпилировать для огромного количества разных процессоров и платформ, имеющих разные архитектурные ограничения и потребности. Например, Linux может работать на процессоре как с блоком управления памятью (MMU), так и без MMU. Поддержка процессоров без MMU реализована в версии ядра uClinux. Более подробную информацию см. в разделе " ".

Основные подсистемы ядра Linux

Давайте рассмотрим некоторые основные компоненты ядра Linux, следуя структуре, изображенной на рис. 3.

Рис. 3. Один из возможных взглядов на архитектуру ядра Linux

Интерфейс системных вызовов

SCI - это тонкий уровень, предоставляющий средства для вызова функций ядра из пространства пользователя. Как уже говорилось, этот интерфейс может быть архитектурно зависимым, даже в пределах одного процессорного семейства. SCI фактически представляет собой службу мультиплексирования и демультиплексирования вызова функций. Реализация SCI находится в./linux/kernel, а архитектурно-зависимая часть - в./linux/arch. Более подробные сведения об этом компоненте можно найти в разделе .

Управление процессами

Управление процессами сконцентрировано на исполнении процессов. В ядре эти процессы называются потоками (threads); они соответствуют отдельным виртуализованным объектам процессора (код потока, данные, стек, процессорные регистры). В пространстве пользователя обычно используется термин процесс , хотя в реализации Linux эти две концепции (процессы и потоки) не различают. Ядро предоставляет интерфейс программирования приложений (API) через SCI для создания нового процесса (порождения копии, запуска на исполнение, вызова функций Portable Operating System Interface ), остановки процесса (kill, exit), взаимодействия и синхронизации между процессами (сигналы или механизмы POSIX).

Еще одна задача управления процессами - совместное использование процессора активными потоками. В ядре реализован новаторский алгоритм планировщика, время работы которого не зависит от числа потоков, претендующих на ресурсы процессора. Название этого планировщика - O(1) - подчеркивает, что на диспетчеризацию одного потока затрачивается столько же времени, как и на множество потоков. Планировщик O(1) также поддерживает симметричные многопроцессорные конфигурации (SMP). Исходные коды системы управления процессами находятся в./linux/kernel, а коды архитектурно-зависимой части - в./linux/arch). Более подробную информацию об этом алгоритме см. в разделе .

Управление памятью

Другой важный ресурс, которым управляет ядро - это память. Для повышения эффективности, учитывая механизм работы аппаратных средств с виртуальной памятью, память организуется в виде т.н. страниц (в большинстве архитектур размером 4 КБ). В Linux имеются средства для управления имеющейся памятью, а также аппаратными механизмами для установления соответствия между физической и виртуальной памятью.

Однако управление памятью - это значительно больше, чем просто управление буферами по 4 КБ. Linux предоставляет абстракции над этими 4 КБ буферами, например, механизм распределения slab allocator. Этот механизм управления базируется на 4 КБ буферах, но затем размещает структуры внутри них, следя за тем, какие страницы полны, какие частично заполнены и какие пусты. Это позволяет динамически расширять и сокращать схему в зависимости от потребностей вышележащей системы.

В условиях наличия большого числа пользователей памяти возможны ситуации, когда вся имеющаяся память будет исчерпана. В связи с этим страницы можно удалять из памяти и переносить на диск. Этот процесс обмена страниц между оперативной памятью и жестким диском называется подкачкой . Исходные коды управления памятью находятся в./linux/mm.

Виртуальная файловая система

Еще один интересный аспект ядра Linux - виртуальная файловая система (VFS), которая предоставляет общую абстракцию интерфейса к файловым системам. VFS предоставляет уровень коммутации между SCI и файловыми системами, поддерживаемыми ядром (см. Рис. 4).

Рис. 4. VFS предоставляет коммутационную матрицу между пользователями и файловыми системами

На верхнем уровне VFS располагается единая API-абстракция таких функций, как открытие, закрытие, чтение и запись файлов. На нижнем уровне VFS находятся абстракции файловых систем, которые определяют, как реализуются функции верхнего уровня. Они представляют собой подключаемые модули для конкретных файловых систем (которых существует более 50). Исходные коды файловых систем находятся в./linux/fs.

Ниже уровня файловой системы находится кэш буферов, предоставляющий общий набор функций к уровню файловой системы (независимый от конкретной файловой системы). Этот уровень кэширования оптимизирует доступ к физическим устройствам за счет краткосрочного хранения данных (или упреждающего чтения, обеспечивающего готовность данных к тому моменту, когда они понадобятся). Ниже кэша буферов находятся драйверы устройств, реализующие интерфейсы для конкретных физических устройств.

Сетевой стек

Сетевой стек по своей конструкции имеет многоуровневую архитектуру, повторяющую структуру самих протоколов. Вы помните, что протокол Internet Protocol (IP) - это базовый протокол сетевого уровня, располагающийся ниже транспортного протокола Transmission Control Protocol, TCP). Выше TCP находится уровень сокетов, вызываемый через SCI.

Уровень сокетов представляет собой стандартный API к сетевой подсистеме. Он предоставляет пользовательский интерфейс к различным сетевым протоколам. Уровень сокетов реализует стандартизованный способ управления соединениями и передачи данных между конечными точками, от доступа к "чистым" кадрам данных и блокам данных протокола IP (PDU) и до протоколов TCP и User Datagram Protocol (UDP). Исходные коды сетевой подсистемы ядра находятся в каталоге./linux/net.

Драйверы устройств

Подавляющее большинство исходного кода ядра Linux приходится на драйверы устройств, обеспечивающие возможность работы с конкретными аппаратными устройствами. В дереве исходных кодов Linux имеется подкаталог драйверов, в котором, в свою очередь, имеются подкаталоги для различных типов поддерживаемых устройств, таких как Bluetooth, I2C, последовательные порты и т.д. Исходные коды драйверов устройств находятся в./linux/drivers.

Архитектурно-зависимый код

Хотя основная часть Linux независима от архитектуры, на которой работает операционная система, в некоторых элементах для обеспечения нормальной работы и повышения эффективности необходимо учитывать архитектуру. В подкаталоге./linux/arch находится архитектурно-зависимая часть исходного кода ядра, разделенная на ряд подкаталогов, соответствующих конкретным архитектурам. Все эти каталоги в совокупности образуют BSP. В случае обычного настольного ПК используется каталог i386. Подкаталог для каждой архитектуры содержит ряд вложенных подкаталогов, относящихся к конкретным аспектам ядра, таким как загрузка, ядро, управление памятью и т.д. Исходные коды архитектурно-зависимой части находятся в./linux/arch.

Помимо переносимости и эффективности, ядро Linux обладает целым рядом других интересных функций, которые не были освещены в вышеприведенном рассмотрении.

Linux, как широко используемая на практике операционная система с открытым исходным кодом, является отличной испытательной площадкой для новых протоколов и их усовершенствований. Linux поддерживает большое количество сетевых протоколов, включая традиционный TCP/IP и его высокоскоростные расширения (для сетей быстрее Gigabit Ethernet и 10 GbE). Linux также поддерживает такие протоколы, как Stream Control Transmission Protocol (SCTP), реализующий множество дополнительных функций, отсутствующих в TCP (применяется в качестве альтернативного протокола транспортного уровня).

Следует отметить, что ядро Linux является динамическим (поддерживает добавление и удаление программных компонентов без остановки системы). Эти компоненты называются динамически загружаемыми модулями ядра. Их можно вводить в систему при необходимости, как во время загрузки (если найдено конкретное устройство, для которого требуется такой модуль), так и в любое время по желанию пользователя.

Еще одно недавнее усовершенствование Linux - возможность ее использования в качестве операционной системы для других операционных систем (т.н. гипервизора). Недавно в ядро было внесено усовершенствование, получившее название Kernel-based Virtual Machine (KVM, виртуальная машина на базе ядра). В результате этой модификации в пространстве пользователя был реализован новый интерфейс, позволяющий исполнять поверх ядра с поддержкой KVM другие операционные системы. В таком режиме можно не только исполнять другие экземпляры Linux, но и виртуализовать Microsoft® Windows®. Единственное ограничение состоит в том, что используемый процессор должен поддерживать новые инструкции виртуализации. Более подробную информацию см. в разделе .

Дальнейшее изучение

В этой статье мы лишь в самых общих чертах рассказали об архитектуре ядра Linux и его особенностях и возможностях. Подробную информацию о содержимом ядра можно найти в каталоге с документацией, который имеется в любом дистрибутиве Linux. Обязательно ознакомьтесь с разделом в конце данной статьи, где имеются ссылки на более подробную информацию по многим обсуждаемым здесь темам.

Похожие статьи