Как создать зашифрованный диск. Защита данных на внешнем HDD или шифруемся по полной

29.08.2019

Исследователи из Принстонского Университета обнаружили способ обхода шифрования жестких дисков, использующий свойство модулей оперативной памяти хранить информацию на протяжении короткого промежутка времени даже после прекращения подачи питания.

Предисловие

Так как для доступа к зашифрованному жесткому диску необходимо иметь ключ, а он, разумеется, хранится в RAM – все, что нужно, это получить физический доступ к ПК на несколько минут. После перезагрузки с внешнего жесткого диска или с USB Flash делается полный дамп памяти и в течение считанных минут из него извлекается ключ доступа.

Таким способом удается получить ключи шифрования (и полный доступ к жесткому диску), используемые программами BitLocker, FileVault и dm-crypt в операционных системах Windows Vista, Mac OS X и Linux, а также популярной свободно распространяемой системой шифрования жестких дисков TrueCrypt.

Важность данной работы заключается в том, что не существует ни одной простой методики защиты от данного способа взлома, кроме как отключение питания на достаточное для полного стирания данных время.

Наглядная демонстрация процесса представлена в видеоролике .

Аннотация

Вопреки устоявшемуся мнению, память DRAM, использующаяся в большинстве современных компьютеров, хранит в себе данные даже после отключения питания в течение нескольких секунд или минут, причём, это происходит при комнатной температуре и даже, в случае извлечения микросхемы из материнской платы. Этого времени оказывается вполне достаточно для снятия полного дампа оперативной памяти. Мы покажем, что данное явление позволяет злоумышленнику, имеющему физический доступ к системе, обойти функции ОС по защите данных о криптографических ключах. Мы покажем, как перезагрузка может использоваться для того, чтобы совершать успешные атаки на известные системы шифрования жёстких дисков, не используя каких-либо специализированных устройств или материалов. Мы экспериментально определим степень и вероятность сохранения остаточной намагниченности и покажем что время, за которое можно снять данные, может быть существенно увеличено при помощи простых приёмов. Так же будут предложены новые методы для поиска криптографических ключей в дампах памяти и исправления ошибок, связанных с потерей битов. Будет также рассказано о несколько способах уменьшения данных рисков, однако простого решения нам не известно.

Введение

Большинство экспертов исходят из того, что данные из оперативной памяти компьютера стираются практически мгновенно после отключения питания, или считают, что остаточные данные крайне сложно извлечь без использования специального оборудования. Мы покажем, что эти предположения некорректны. Обычная DRAM память теряет данные постепенно в течение нескольких секунд, даже при обычных температурах, а если даже микросхема памяти будет извлечена из материнской платы, данные сохранятся в ней на протяжении минут или даже часов, при условии хранения этой микросхемы при низких температурах. Остаточные данные могут быть восстановлены при помощи простых методов, которые требуют кратковременного физического доступа к компьютеру.

Мы покажем ряд атак, которые, используя эффекты остаточной намагниченности DRAM, позволят нам восстановить хранимые в памяти ключи шифрования. Это представляет собой реальную угрозу для пользователей ноутбуков, которые полагаются на системы шифрования жёсткого диска. Ведь в случае, если злоумышленник похитит ноутбук, в тот момент, когда зашифрованный диск подключён, он сможет провести одну из наших атак для доступа к содержимому, даже если сам ноутбук заблокирован или находится в спящем режиме. Мы это продемонстрируем, успешно атакуя несколько популярных систем шифрования, таких как – BitLocker, TrueCrypt и FileVault. Эти атаки должны быть успешны и в отношении других систем шифрования.

Хотя мы сосредоточили наши усилия на системах шифрования жёстких дисков, в случае физического доступа к компьютеру злоумышленника, любая важная информация хранящаяся в оперативной памяти может стать объектом для атаки. Вероятно, и многие другие системы безопасности уязвимы. Например, мы обнаружили, что Mac OS X оставляет пароли от учётных записей в памяти, откуда мы смоги их извлечь, так же мы совершили атаки на получение закрытых RSA ключей веб-сервера Apache.

Некоторые представители сообществ по информационной безопасности и физике полупроводников уже знали об эффекте остаточной намагниченности DRAM, об этом было очень мало информации. В итоге, многие, кто проектирует, разрабатывает или использует системы безопасности, просто незнакомы с этим явлением и как легко оно может быть использовано злоумышленником. Насколько нам известно, это первая подробная работа изучающие последствия данных явлений для информационной безопасности.

Атаки на зашифрованные диски

Шифрование жёстких дисков это известный способ защиты против хищения данных. Многие полагают, что системы шифрования жёстких дисков позволят защитить их данные, даже в том случае, если злоумышленник получил физических доступ к компьютеру (собственно для этого они и нужны, прим. ред.). Закон штата Калифорния, принятый в 2002 году, обязывает сообщать о возможных случаях раскрытия персональных данных, только в том случае, если данные не были зашифрованы, т.к. считается, что шифрование данных - это достаточная защитная мера. Хотя закон не описывает никаких конкретных технических решений, многие эксперты рекомендуют использовать системы шифрования жёстких дисков или разделов, что будет считаться достаточными мерами для защиты. Результаты нашего исследования показали, что вера в шифрование дисков необоснованна. Атакующий, далеко не самой высокой квалификации, может обойти многие широко используемые системы шифрования, в случае если ноутбук с данными похищен, в то время когда он был включён или находился в спящем режиме. И данные на ноутбуке могут быть прочитаны даже в том случае, когда они находятся на зашифрованном диске, поэтому использование систем шифрования жёстких дисков не является достаточной мерой.

Мы использовали несколько видов атак на известные системы шифрования жёстких дисков. Больше всего времени заняла установка зашифрованных дисков и проверка корректности обнаруженных ключей шифрования. Получение образа оперативной памяти и поиск ключей занимали всего несколько минут и были полностью автоматизированы. Есть основания полагать, что большинство систем шифрования жёстких дисков подвержены подобным атакам.

BitLocker

BitLocker – система, входящая в состав некоторых версий ОС Windows Vista. Она функционирует как драйвер работающий между файловой системой и драйвером жёсткого диска, шифруя и расшифровывая по требованию выбранные секторы. Используемые для шифрования ключи находятся в оперативной памяти до тех пор, пока зашифрованный диск подмантирован.

Для шифрования каждого сектора жёсткого диска BitLocker использует одну и ту же пару ключей созданных алгоритмом AES: ключ шифрования сектора и ключ шифрования, работающий в режиме сцепления зашифрованных блоков (CBC). Эти два ключа в свою очередь зашифрованы мастер ключом. Чтобы зашифровать сектор, проводится процедура двоичного сложения открытого текста с сеансовым ключом, созданным шифрованием байта смещения сектора ключом шифрования сектора. Потом, полученные данные обрабатываются двумя смешивающими функциями, которые используют разработанный Microsoft алгоритм Elephant. Эти безключевые функции используются с целью увеличения количества изменений всех битов шифра и, соответственно, увеличения неопределённости зашифрованных данных сектора. На последнем этапе, данные шифруются алгоритмом AES в режиме CBC, с использованием соответствующего ключа шифрования. Вектор инициализации определяется путём шифрования байта смещения сектора ключом шифрования, используемом в режиме CBC.

Нами была реализована полностью автоматизированная демонстрационная атака названная BitUnlocker. При этом используется внешний USB диск с ОС Linux и модифицированным загрузчиком на основе SYSLINUX и драйвер FUSE позволяющий подключить зашифрованные BitLocker диски в ОС Linux. На тестовом компьютере с работающей Windows Vista отключалось питание, подключался USB жёсткий диск, и с него происходила загрузка. После этого BitUnlocker автоматически делал дамп оперативной памяти на внешний диск, при помощи программы keyfind осуществлял поиск возможных ключей, опробовал все подходящие варианты (пары ключа шифрования сектора и ключа режима CBC), и в случае удачи подключал зашифрованный диск. Как только диск подключался, появлялась возможность с ним работать как с любым другим диском. На современном ноутбуке с 2 гигабайтами оперативной памяти процесс занимал около 25 минут.

Примечательно, что данную атаку стало возможным провести без реверс-инжиниринга какого-либо ПО. В документации Microsoft система BitLocker описана в достаточной степени, для понимания роли ключа шифрования сектора и ключа режима CBC и создания своей программы реализующей весь процесс.

Основное отличие BitLocker от других программ этого класса – это способ хранения ключей при отключённом зашифрованном диске. По умолчанию, в базовом режиме, BitLocker защищает мастер ключ только при помощи TPM модуля, который существует на многих современных ПК. Данный способ, который, по всей видимости, широко используется, особенно уязвим к нашей атаке, поскольку он позволяет получить ключи шифрования, даже если компьютер был выключен в течение долгого времени, поскольку, когда ПК загружается, ключи автоматически подгружаются в оперативную память (до появления окна входа в систему) без ввода каких-либо аутентификационных данных.

По всей видимости, специалисты Microsoft знакомы с данной проблемой и поэтому рекомендуют настроить BitLocker в улучшенный режим, где защита ключей осуществляется, не только при помощи TPM, но и паролем или ключом на внешнем USB носителе. Но, даже в таком режиме, система уязвима, если злоумышленник получит физический доступ к ПК в тот момент, когда он работает (он даже может быть заблокирован или находиться в спящем режиме, (состояния - просто выключен или hibernate в это случае считаются не подверженными данной атаке).

FileVault

Система FileVault от Apple была частично исследована и проведён реверс-инжиниринг. В Mac OS X 10.4 FileVault использует 128-битный ключ AES в режиме CBC. При введении пароля пользователя, расшифровывается заголовок, содержащий ключ AES и второй ключ K2, используемый для расчёта векторов инициализации. Вектор инициализации для I-того блока диска рассчитывается как HMAC-SHA1 K2(I).

Мы использовали нашу программу EFI для получения образов оперативной памяти для получения данных с компьютера Макинтош (базирующимся на процессоре Intel) с подключённым диском, зашифрованным FileVault. После этого программа keyfind безошибочно автоматически находила AES ключи FileVault.

Без вектора инициализации, но с полученным AES ключом появляется возможность расшифровать 4080 из 4096 байт каждого блока диска (всё кроме первого AES блока). Мы убедились, что инициализационный вектор так же находится в дампе. Предполагая, что данные не успели исказиться, атакующий может определить вектор, поочерёдно пробуя все 160-битовые строки в дампе и проверяя, могут ли они образовать возможный открытый текст, при их бинарном сложении с расшифрованной первой частью блока. Вместе, используя программы типа vilefault, AES ключи и инициализационный вектор позволяют полностью расшифровывать зашифрованный диск.

В процессе исследования FileVault, мы обнаружили, что Mac OS X 10.4 и 10.5 оставляют множественные копии пароля пользователя в памяти, где они уязвимы к данной атаке. Пароли учётных записей часто используются для защиты ключей, которые в свою очередь, могу использоваться для защиты ключевых фраз зашифрованных FileVault дисков.

TrueCrypt

TrueCrypt – популярная система шифрования с открытым кодом, работающая на ОС Windows, MacOS и Linux. Она поддерживает множество алгоритмов, включая AES, Serpent и Twofish. В 4-ой версии, все алгоритмы работали в режиме LRW; в текущей 5-ой версии, они используют режим XTS. TrueCrypt хранит ключ шифрования и tweak ключ в заголовке раздела на каждом диске, который зашифрован другим ключом получающимся из вводимого пользователем пароля.

Мы тестировали TrueCrypt 4.3a и 5.0a работающие под ОС Linux. Мы подключили диск, зашифрованный при помощи 256-битного AES ключа, потом отключили питание и использовали для загрузки собственное ПО для дампа памяти. В обоих случаях, keyfind обнаружила 256-битный неповреждённый ключ шифрования. Так же, в случае TrueCrypt 5.0.a, keyfind смогла восстановить tweak ключ режима XTS.

Чтобы расшифровать диски созданные TrueCrypt 4, необходим tweak ключ режима LRW. Мы обнаружили, что система хранит его в четырёх словах перед ключевым расписанием ключа AES. В нашем дампе, LRW ключ не был искажён. (В случае появления ошибок, мы все равно смогли бы восстановить ключ).

Dm-crypt

Ядро Linux, начиная с версии 2.6, включает в себя встроенную поддержку dm-crypt – подсистемы шифрования дисков. Dm-crypt использует множество алгоритмов и режимов, но, по умолчанию, она использует 128-битный шифр AES в режиме CBC с инициализационными векторами создаваемыми не на основе ключевой информации.

Мы тестировали созданный dm-crypt раздел, используя LUKS (Linux Unified Key Setup) ветку утилиты cryptsetup и ядро 2.6.20. Диск был зашифрован при помощи AES в режиме CBC. Мы ненадолго отключили питание и, используя модифицированный PXE загрузчик, сделали дамп памяти. Программа keyfind обнаружила корректный 128-битный AES ключ, который и был восстановлен без каких-либо ошибок. После его восстановления, злоумышленник может расшифровать и подключить раздел зашифрованный dm-crypt, модифицируя утилиту cryptsetup таким образом, чтобы она воспринимала ключи в необходимом формате.

Способы защиты и их ограничения

Реализация защиты от атак на оперативную память нетривиальна, поскольку используемые криптографические ключи необходимо где-либо хранить. Мы предлагаем сфокусировать усилия на уничтожении или скрытии ключей до того, как злоумышленник сможет получить физический доступ к ПК, предотвращая запуск ПО для дампа оперативной памяти, физически защищая микросхемы ОЗУ и по возможности снижая срок хранения данных в ОЗУ.

Перезапись памяти

Прежде всего, надо по-возможности избегать хранения ключей в ОЗУ. Необходимо перезаписывать ключевую информацию, если она больше не используется, и предотвращать копирование данных в файлы подкачки. Память должна очищаться заблаговременно средствами ОС или дополнительных библиотек. Естественно, эти меры не защитят используемые в данный момент ключи, поскольку они должны храниться в памяти, например такие ключи как, используемые для шифрованных дисков или на защищённых веб серверах.

Так же, ОЗУ должна очищаться в процессе загрузки. Некоторые ПК могут быть настроены таким образом, чтобы очищать ОЗУ при загрузке при помощи очищающего POST запроса (Power-on Self-Test) до того как загружать ОС. Если злоумышленник не сможет предотвратить выполнение данного запроса, то на данном ПК у него не будет возможности сделать дамп памяти с важной информацией. Но, у него всё ещё остаётся возможность вытащить микросхемы ОЗУ и вставить их в другой ПК с необходимыми ему настройками BIOS.

Ограничение загрузки из сети или со съёмных носителей

Многие наши атаки были реализованы с использованием загрузки по сети или со съёмного носителя. ПК должен быть настроен так, чтобы требовать пароль администратора для загрузки с этих источников. Но, необходимо отметить, что даже если система настроена на загрузку только с основного жёсткого диска, атакующий может сменить сам жёсткий диск, или во многих случаях, сбросить NVRAM компьютера для отката на первоначальные настройки BIOS.

Безопасный спящий режим

Результаты исследования показали, что простое блокирование рабочего стола ПК (т.е ОС продолжает работать, но, для того, чтобы с ней начать взаимодействие необходим ввод пароля) не защищает содержимое ОЗУ. Спящий режим не эффективен и в том случае, если ПК блокируется при возврате из спящего режима, поскольку злоумышленник может активировать возврат из спящего режима, после чего перезагрузить ноутбук и сделать дамп памяти. Режим hibernate (содержимое ОЗУ копируется на жёсткий диск) так же не поможет, кроме случаев использования ключевой информации на отчуждаемых носителях для восстановления нормального функционирования.

В большинстве систем шифрования жёстких дисков, пользователи могут защититься выключением ПК. (Система Bitlocker в базовом режиме работы TPM модуля остаётся уязвимой, поскольку диск будет подключен автоматически, когда ПК будет включён). Содержимое памяти может сохраняться в течение короткого периода после отключения, поэтому рекомендуется понаблюдать за своей рабочей станцией ещё в течение пары минут. Несмотря на свою эффективность, данная мера крайне неудобна в связи с долгой загрузкой рабочих станций.

Переход в спящий режим можно обезопасить следующими способами: требовать пароль или иной другой секрет чтобы «разбудить» рабочую станцию и шифровать содержимое памяти ключом производным от этого пароля. Пароль должен быть стойким, так как злоумышленник может сделать дамп памяти и после чего попробовать подобрать пароль перебором. Если же шифрование всей памяти невозможно, необходимо шифровать только те области, которые содержат ключевую информацию. Некоторые системы могут быть настроены таким образом, чтобы переходить в такой тип защищённого спящего режима, хотя это обычно и не является настройкой по умолчанию.

Отказ от предварительных вычислений

Наши исследования показали, что использование предварительных вычислений для того, чтобы ускорить криптографические операции делает ключевую информацию более уязвимой. Предварительные вычисления приводят к тому, что в памяти появляется избыточная информации о ключевых данных, что позволяет злоумышленнику восстановить ключи даже в случае наличия ошибок. Например, как описано в разделе 5, информация об итерационных ключах алгоритмов AES и DES крайне избыточна и полезна для атакующего.

Отказ от предварительных вычислений снизит производительность, поскольку потенциально сложные вычисления придётся повторять. Но, например, можно кэшировать предварительно высчитанные значения на определённый промежуток времени и стирать полученные данные, если они не используются в течение этого интервала. Такой подход представляет собой компромисс между безопасностью и производительностью системы.

Расширение ключей

Другой способ предотвратить восстановление ключей – это изменение ключевой информации, хранящейся в памяти, таким образом, чтобы усложнить восстановление ключа из-за различных ошибок. Этот метод был рассмотрен в теории, где была показана функция, стойкая к раскрытию, чьи входные данные остаются сокрытыми, даже если практически все выходные данные были обнаружены, что очень похоже на работу однонаправленных функций.

На практике, представьте, что у нас есть 256-битный AES ключ K, который в данный момент не используется, но понадобится позднее. Мы не можем перезаписать его, но мы хотим сделать его стойким к попыткам восстановления. Один из способов добиться этого – это выделить большую B-битную область данных, заполнить её случайными данными R, после чего хранить в памяти результат следующего преобразования K+H(R) (суммирование двоичное, прим. ред.), где H – это хэш функция, например SHA-256.

Теперь представьте, что электричество было отключено, это приведёт к тому, что d бит в данной области будут изменены. Если хэш функция стойкая, при попытке восстановления ключа K, злоумышленник может рассчитывать только на то, что он сможет угадать какие биты области B были изменены из приблизительно половины, которые могли изменится. Если d бит были изменены, злоумышленнику придётся провести поиск области размером (B/2+d)/d чтобы найти корректные значения R и уже после этого восстановить ключ K. Если область B велика, такой поиск может быть очень долог, даже если d относительно мала.

Теоретически, таким способом можно хранить все ключи, рассчитывая каждый ключ, только когда это нам необходимо, и удаляя его, когда он нам не нужен. Таким образом, применяя вышеописанный метод, мы может хранить ключи в памяти.

Физическая защита

Некоторые из наших атак основывались на наличии физического доступа к микросхемам памяти. Такие атаки могут быть предотвращены физической защитой памяти. Например, модули памяти находиться в закрытом корпусе ПК, или залиты эпоксидным клеем, чтобы предотвратить попытки их извлечения или доступа к ним. Так же, можно реализовать затирание памяти как ответную реакцию на низкие температуры или попытки открыть корпус. Такой способ потребует установки датчиков с независимой системой питания. Многие из таких способов связаны с аппаратурой, защищённой от несанкционированного вмешательства (например, сопроцессор IBM 4758) и могут сильно повысить стоимость рабочей станции. С другой стороны, использование памяти, припаянной к материнской плате, обойдётся гораздо дешевле.

Изменение архитектуры

Можно изменить архитектуру ПК. Что невозможно для уже используемых ПК, зато позволит обезопасить новые.

Первый подход заключается в том, чтобы спроектировать DRAM модули таким образом, чтобы они быстрее стирали все данные. Это может быть непросто, поскольку цель как можно более быстрого стирания данных, противоречит другой цели, чтобы данные не пропадали между периодами обновления памяти.

Другой подход заключается в добавлении аппаратуры хранения ключевой информации, которая бы гарантированно стирала всю информацию со своих хранилищ при запуске, перезапуске и выключении. Таким образом, мы получим надёжное место для хранения нескольких ключей, хотя уязвимость, связанная с их предварительными вычислениями останется.

Другие эксперты предложили архитектуру, в рамках которой содержимое памяти будет постоянно шифроваться. Если, вдобавок к этому, реализовать стирание ключей при перезагрузке и отключении электричества, то данный способ обеспечит достаточную защищённость от описанных нами атак.

Доверенные вычисления

Аппаратура, соответствующая концепции «доверенных вычислений», например, в виде TPM модулей уже используется в некоторых ПК. Несмотря на свою полезность в защите от некоторых атак, в своей нынешней форме такое оборудование не помогает предотвратить описанные нами атаки.

Используемые TPM модули не реализуют полное шифрование. Вместо этого, они наблюдают за процессом загрузки для принятия решения о том, безопасно ли загружать ключ в ОЗУ или нет. Если ПО необходимо использовать ключ, то можно реализовать следующую технологию: ключ, в пригодной для использования форме не будет храниться в ОЗУ, до тех пор пока процесс загрузки не пройдёт по ожидаемому сценарию. Но, как только ключ оказывается в оперативной памяти – он сразу становиться мишенью для наших атак. TPM модули могут предотвратить загрузку ключа в память, но они не предотвращают его считывание из памяти.

Выводы

Вопреки популярному мнению, модули DRAM в отключённом состоянии хранят данные в течение относительно долгого времени. Наши эксперименты показали, что данное явление позволяет реализовать целый класс атак, которые позволяют получить важные данные, такие как ключи шифрования из оперативной памяти, несмотря на попытки ОС защитить её содержимое. Описанные нами атаки реализуемы на практике, и наши примеры атак на популярные системы шифрования доказывают это.

Но и другие виды ПО также уязвимы. Системы управления цифровыми правами (DRM) часто используют симметричные ключи, хранящиеся в памяти, и их так же можно получить, используя описанные методы. Как мы показали, веб-сервера с поддержкой SSL тоже уязвимы, поскольку они хранят в памяти закрытые ключи необходимые для создания SSL сеансов. Наши способы поиска ключевой информации, скорее всего, будут эффективны для поиска паролей, номеров счетов и любой другой важной информации, хранящейся в ОЗУ.

Похоже что нет простого способа устранить найденные уязвимости. Изменение ПО скорее всего не будет эффективным; аппаратные изменения помогут, но временные и ресурсные затраты будут велики; технология «доверенных вычислений» в её сегодняшней форме так же мало эффективна, поскольку она не может защитить ключи находящиеся в памяти.

По нашему мнению, больше всего данному риску подвержены ноутбуки, которые часто находятся в общественных местах и функционируют в режимах уязвимых для данных атак. Наличие таких рисков, показывает, что шифрование дисков осуществляет защиту важных данных в меньшей степени, чем принято считать.

В итоге, возможно, придётся рассматривать DRAM память как не доверенную компоненту современного ПК, и избегать обработки важной конфиденциальной информации в ней. Но на данный момент это нецелесообразно, до тех пор, пока архитектура современных ПК не изменится, чтобы позволить ПО хранить ключи в безопасном месте.

Предлагаем Вашему вниманию обзор самых популярных аппаратных и программных средств для шифрования данных на внешнем жестком диске.

Начнем с самого простого. В Mac OS X встроена Дисковая утилита, которая позволяет создать зашифрованный образ диска. Также для шифрования файлов или папок можно использовать стороннее программное обеспечение, например , FileWard, . Кроме этого, некоторые приложения для создания резервных копий предлагают шифрование бекапов из коробки.

Эти методы хороши. Но иногда использование программного шифрования не является лучшим вариантом. Например, когда Вам нужно шифровать резервные копии Time Machine. Для защиты таких бекапов придется проделать хитрые манипуляции, потому что Time Machine не поддерживает шифрование. Обычное ПО не поможет в том случае, когда нужно создать зашифрованную копию загрузочного диска так, чтобы он оставался загрузочным. Зашифрованных дисков касается и другое ограничение: их нельзя использовать на других компьютерах (Mac или PC) без специального ПО.

– одно из тех приложений, позволяющих шифровать содержимое диска, который остается загрузочным и пригодным для использования на Mac и PC. Это прекрасное приложение, но для доступа к информации на каждом компьютере, к которому подключается такой диск, необходима инсталляция PGP. Также, в случае повреждения диска шифрование может помешать восстановлению данных.

Если Вам нужно универсальное решение, которое не накладывает ограничения на использование диска, стоит приобрести HDD со встроенным шифрованием. Диск самостоятельно шифрует и дешифрует данные, поэтому необходимость в установке дополнительного программного обеспечения отсутствует. При этом диск можно использовать в качестве загрузочного тома или для Time Machine. Одно предостережение: если у диска откажет контроллер или другая электроника, у Вас не будет возможности перенести данные с устройства (даже с полностью работающей механикой) до полного восстановления HDD.

Жесткие диски с поддержкой шифрования бывают нескольких типов, в зависимости от механизма дешифровки:

Аппаратные ключи

Некоторые производители предлагают шифрующие HDD-боксы, которые блокируются с помощью физического устройства. До тех пор, пока присутствует ключ (подключен или находится рядом с диском), диск может быть прочитан.

HDD такого типа: RadTech’s (95 долларов), RocStor и несколько устройств от (от 50 долларов). Все боксы имеют два или три совместимых ключа, которые подключаются в специальный порт устройства. SecureDISK предлагает с инфракрасным ключом (для использования диска носитель должен находится рядом).

Сканеры отпечатков пальцев

Если Вы беспокоитесь из-за потери физического носителя, то можно посмотреть в сторону HDD-боксов со сканером отпечатков пальцев. Несколько примеров: MXI Security (419-599$) и LaCie (400$ за 2Гб модель). (Некоторые старшие модели боксов LaCie, формата 2.5″ не шифруют данные, а используют менее надежную блокировку в прошивке). Эти диски удобные в использовании и могут хранить отпечатки пальцев до пяти человек. Стоит отметить, что существуют несколько техник обмана сканера пальцев (без наличия оригинального пальца).

Клавиатура

(230-480$) – шифрующие дисковые боксы, для которых не нужны физические ключи или биометрические считыватели. Вместо них используется клавиатура для введения пароля (до 18 символов). Применение клавиатуры вместо физического ключа удобно том случае, когда диск часто ходит по рукам. Диски поддерживают функцию “самоликвидации”, которая удаляет всю хранимую информацию после нескольких неудачных попыток ввода пароля.

Аутентификация двух типов

Как минимум один продукт – предлагает комбинацию физического ключа (в виде смарт карты) и встроенной клавиатуры в компактной дисковой оболочке. Этот вариант для защиты жесткого диска является самым надежным, поскольку для доступа к информации пользователь должен иметь ключ и знать секретный пароль.

Для предотвращения несанкционированного доступа к системе и данным в Windows 7/10 предусмотрена возможность установки пароля, в том числе графического, однако такой способ защиты не может считаться сколь либо надежным. Пароль от локальной учетной записи легко может быть сброшен сторонними утилитами, а самое главное, ничто не мешает получить доступ к файловой системе, загрузившись с любого LiveCD со встроенным файловым менеджером.

Чтобы защитить свои данные по-настоящему, необходимо использовать шифрование. Для этого сгодится и встроенная функция BitLocker, но лучше воспользоваться сторонними программами. Долгое время наиболее предпочтительным приложением для шифрования данных был TrueCrypt, однако в 2014 году его разработчики свернули проект, заявив, что программа не является более безопасной. Вскоре, однако, работа над ним была возобновлена, но уже новой командой, да и сам проект получил новое имя. Так на свет появился VeraCrypt.

По сути, VeraCrypt это усовершенствованная версия TrueCrypt и именно эту программу мы предлагаем использовать для защиты вашей информации. В приведенном примере мы задействуем VeraCrypt «по максимуму», зашифровав с ее помощью весь жесткий диск с системным и пользовательским разделами. Такой способ шифрования имеет определенные риски – есть доля вероятности, пусть и очень небольшая, что система не сможет загрузиться, поэтому прибегать к нему советуем только тогда, когда это действительно вам нужно.

Установка и базовая настройка VeraCrypt

Процедура установки VeraCrypt ничем не отличается от инсталляции других программ, за одним лишь исключением. В самом начале вам будет предложено выбрать между режимами установки Install или Extract .

В первом случае программа будет внедрена в ОС, что позволит вам подключать зашифрованные контейнеры и шифровать сам системный раздел. Режим Extract просто распаковывает исполняемые файлы VeraCrypt, позволяя использовать его как портативное приложение. Часть функций, в том числе шифрование диска с Windows 7/10, при этом становится недоступной.

Сразу после запуска зайдите в меню Settings – Language , так как по умолчанию программа устанавливается на английском языке.

Шифрование диска

Несмотря на кажущуюся сложность задачи, все очень просто. Выберите в меню «Система» опцию «Зашифровать системный раздел/диск».

В открывшемся окне мастера в качестве метода выберите «Обычный» (этого достаточно), область шифрования – весь диск.

По завершении поиска скрытых секторов (процедура может занять продолжительное время), укажите число операционных систем и…

алгоритм шифрования (здесь все лучше оставить по умолчанию).

Примечание: если во время поиска скрытых секторов Windows перестанет отвечать, перезагрузите ПК принудительно и в следующий раз пропустите этот этап, выбрав «Нет».

Придумайте и введите в поля пароль.

Хаотично перемещая мышь, сгенерируйте ключ и нажмите «Далее».

На этом этапе программа предложит создать VRD – диск восстановления и записать его на флеш- или оптический носитель.

Когда на экране появится запрос на выполнение пре-теста шифрования системы, нажмите «Тест».

Потребуется перезагрузка компьютера. После включения ПК появится экран загрузчика VeraCrypt. Здесь вам нужно будет ввести придуманный пароль и PIM – количество итераций шифрования. Если вы раньше нигде не вводили PIM, просто нажмите ввод, значение опции будет установлено по умолчанию.

Спустя несколько минут Windows загрузится в обычном режиме, но при этом на рабочем столе появится окошко Pretest Completed – предварительное тестирование выполнено. Это означает, что можно приступать к шифрованию. Нажмите кнопку «Encrypt» и подтвердите действие.

Процедура шифрования будет запущена. Она может занять длительное время, все зависит от размера диска и его заполненности данными, так что наберитесь терпения и ждите.

Примечание: если на диске имеется шифрованный раздел EFI, что характерно для последних версий ПК, в начале шифрования вы можете получить уведомление «Похоже, Windows не установлена на диске…». Это означает, что зашифровать такой диск с помощью VeraCrypt не получится.

После того как все содержимое диска будет зашифровано, окно загрузчика VeraCrypt станет появляться каждый раз при включении компьютера и каждый раз вам нужно будет вводить пароль, другим способом получить доступ к зашифрованным данным нельзя. С расшифровкой диска все намного проще. Все, что вам нужно будет сделать, это запустить программу, выбрать в меню «Система» опцию «Перманентно расшифровать системный раздел/диск» и проследовать указаниям мастера.

На наших носителях в огромных количествах хранится персональная и важная информация, документы и медиафайлы. Их необходимо защитить. Такие криптографические методы, как AES и Twofish , стандартно предлагающиеся в шифровальных программах, относятся примерно к одному поколению и обеспечивают сравнительно высокий уровень безопасности.

На практике обычный пользователь не сможет сильно ошибиться в выборе. Вместо этого стоит определиться со специализированной программой в зависимости от намерений: зачастую шифрование жесткого диска использует иной операционный режим, чем шифрование файлов.

Долгое время лучшим выбором была утилита TrueCrypt , если речь шла о полном шифровании жесткого диска или сохранении данных в зашифрованном контейнере. Сейчас этот проект закрыт. Его достойным приемником стала программа с открытым исходным кодом VeraCrypt . В ее основу был положен код TrueCrypt, однако его доработали, благодаря чему качество шифрования повысилось.

К примеру, в VeraCrypt улучшено генерирование ключа из пароля . Для шифрования жестких дисков используется не такой распространенный режим, как CBC , а XTS . В данном режиме блоки шифруются по типу ECB , однако при этом добавляется номер сектора и внутрисегментное смещение .

Случайные числа и сильные пароли

Для защиты отдельных файлов достаточно бесплатной программы с простым интерфейсом, например, MAXA Crypt Portable или AxCrypt . Мы рекомендуем AxCrypt, поскольку она представляет собой проект с открытым исходным кодом. Однако при ее установке следует обратить внимание на то, что в пакете с приложением идут ненужные дополнения, поэтому с них необходимо снять флажки.

Утилита запускается щелчком правой кнопкой мыши по файлу или папке и вводу пароля (например, при открытии зашифрованного файла ). В данной программе используется алгоритм AES на 128 бит с режимом CBC . Для создания надежного вектора инициализации (IV) Ax-Crypt встраивает генератор псевдослучайных чисел.

Если IV не является настоящим случайным числом, то режим CBC его ослабляет. Программа MAXA Crypt Portable работает похожим образом, однако шифрование происходит с помощью ключа длиной в 256 бит . Если вы загружаете личную информацию в облачные хранилища, необходимо исходить из того, что их владельцы, например, Google и Dropbox, сканируют контент.

Boxcryptor встраивается в процесс в качестве виртуального жесткого диска и по щелчку правой кнопкой мыши шифрует все расположенные там файлы еще до загрузки в облако. При этом важно обзавестись менеджером паролей, таким как Password Depot . Он создает сложные пароли, которые не сможет запомнить ни один человек. Нужно только не потерять мастер-пароль к этой программе.

Используем зашифрованные диски

Подобно TrueCrypt, мастер утилиты VeraCrypt проведет пользователя сквозь все этапы создания зашифрованного диска. Вы также можете защитить существующий раздел.

Шифрование одним кликом

Бесплатная программа Maxa Crypt Portable предлагает все необходимые опции для быстрого шифрования отдельных файлов по алгоритму AES. Нажатием на кнопку вы запускаете генерацию безопасного пароля.

Связываем облако с частной жизнью

Boxcryptor по одному клику шифрует важные файлы перед загрузкой в хранилища Dropbox или Google. По умолчанию применяется шифрование AES с ключом длиной 256 бит .

Краеугольный камень - менеджер паролей

Длинные пароли усиливают безопасность. Программа Password Depot генерирует и применяет их, в том числе для шифрования файлов и работы с веб-службами, которым передает данные для доступа к учетной записи.

Фото: компании-производители

Наверное, у каждого из нас есть папки и файлы, которые хотелось бы скрыть от посторонних глаз. Тем более, когда за компьютером работаете не только вы, но и другие пользователи.

Для этого можно, конечно, поставить или поместить ее в архив с паролем. Но этот способ не всегда удобен, тем более для тех файлов, с которыми вы собираетесь работать. Для этого больше подойдет программа для шифрования файлов .

1. Программа для шифрования

Несмотря на большое количество платных программ (например: DriveCrypt, BestCrypt, PGPdisk), решил остановится в этом обзоре на бесплатной, возможностей которой хватит для большинства пользователей.

http://www.truecrypt.org/downloads

Отличная программа для шифрования данных, будь то файлы, папки и пр. Суть работы состоит в создании файла, напоминающего образ диска (кстати, новые версии программы позволяют зашифровать даже целый раздел, например, можно зашифровать флешку и пользоваться ей, не боясь, что кто-нибудь кроме вас, сможет прочитать с нее информацию). Этот файл так просто не открыть, он зашифрован. Если вы забудете пароль от такого файла - врят ли вы когда-нибудь увидите свои файлы, которые хранились в нем…

Что еще интересного:

Вместо пароля можно использовать файл-ключ (весьма интересная опция, нет файла - нет доступа к зашифрованному диску);

Несколько алгоритмов шифрования;

Возможность создания скрытого зашифрованного диска (о его существовании будете знать только вы);

Возможность назначить кнопки для быстрого монтирования диска и его размонтирвоания (отключения).

2. Создание и шифрование диска

Прежде чем приступить к шифрованию данных, нужно создать наш диск, на который и скопируем файлы, которые нужно спрятать от посторонних глаз.

Для этого запускаем программу и нажимаем кнопку «Create Volume», т.е. приступаем к созданию нового диска.

Выбираем первый пункт «Create an encrypted file container» - создание зашифрованного файла-контейнера.

Здесь нам на выбор предлагают два варианта файла-контейнера:

1. Обычный, стандартный (тот, который будет виден всем пользователям, но открыть смогут лишь те, кто знает пароль).

2. Скрытый (Hidden). О его существовании будете знать только вы. Остальные пользователи не смогут увидеть ваш файл-контейнер.

Теперь программа попросит вас указать месторасположение вашего секретного диска. Рекомендую выбрать диск, на котором у вас больше места. Обычно такой диск D, т.к. диск C системный и на нем, обычно, установлена ОС Windows.

Важный шаг: указать алгоритм шифрования. В программе их несколько. Для обычного непосвященного пользователя скажу, что алгоритм AES, который предлагает программа по умолчанию, позволяет защитить ваши файлы очень надежно и вряд ли, кто из пользователей вашего компьютера сможет его взломать! Можно выбрать AES и нажать на далее - «NEXT».

В этом шаге вы можете выбрать размер вашего диска. Чуть ниже, под окном для ввода желаемого размера, показывется свободное место на вашем реальном жестком диске.

Пароль - несколько символов (рекомендуется не менее 5-6) без которых доступ к вашему секретному диску будет закрыт. Советую выбрать такой пароль, который вы не забудете даже через пару лет! Иначе, важная информация может стать недоступна для вас же самих.

Если вы хотите использовать надёжный пароль, то рекомендуем вам воспользоваться генератором для его создания. Лучшим выбором станет платформа, которая также ответит на вопрос «надёжен ли мой пароль»: https://calcsoft.ru/generator-parolei.

Спустя некоторое время, программа вам сообщит, что был успешно создан зашифрованный файл-контейнер и вы можете приступать к работе с ним! Отлично…

3. Работа с зашифрованным диском

Механизм достаточно простой: выбирайте какой файл-контейнер хотите подключить, затем вводите пароль к нему - если все «OK» - то у вас в системе появляется новый диск и вы можете работать с ним как если бы это был реальный HDD.

Рассмотрим более подробно.

Щелкаете правой кнопкой по букве диска, которую хотите присвоить вашему файл-контейнеру, в выпадающем меню выбираете «Select File and Mount» - выбрать файл и присоединить его для дальнейшей работы.

Похожие статьи