Последовательный и параллельный колебательный контур. Электромагнитные колебания

25.09.2019

Электрическим колебательным контуром называют замкнутую цепь, состоящую из конденсатора С и катушки индуктивности L (рис. 9.8). Периодически повторяющиеся изменения силы тока в катушке и напряжения на конденсаторе при отсутствии внешних воздействий называются свободными колебаниями.

При подключении к обкладкам заряженного конденсатора (рис. 9.8а ) катушки индуктивности в ней возникает ток. Если электрическое сопротивление катушки пренебрежимо мало, то энергия электрического поля W е заряженного конденсатора начинает превращаеться в энергию магнитного поля W м . Мгновенной раз-рядке конденсатора препятствует ЭДС самоиндукции, сдер-живающая процесс возрастания силы тока в катушке.

В тот мо-мент, когда конденсатор полностью разрядится, сила тока в катушке и энергия магнитного поля достигнут максимальных (амплитудных) значений (рис. 9.8б ). После разрядки конденсатора ток в катушке убывает, но это приводит к уменьшению магнитного потока, что вызывает появ-ление в катушке ЭДС самоиндукции и индукционного тока. Сейчас на-правление индукционного тока таково, что он препятствует умень-шению магнитного потока.

Конденсатор заряжается индукционным током катушки. Когда ток исчезнет, конденсатор окажется заряженным до первоначального значения заряда, но противоположного знака (рис. 9.8в ). После этого происходит следующий процесс перезарядки конденсатора током, протекающим в противоположном направлении (рис. 9.8г ), и возврат в исходное состояние после совершения одного полного колебания (рис. 9.8д ). В верхней части рисунка показаны значения времени соответ-ству-ющих состояний, выраженные в долях периода

Где w 0 - круговая (циклическая) частота колебаний в контуре.

Из закона сохранения энергии следует, что при отсутствии в контуре сопротивления максимальное значение энергии W e электрического поля заряжен-ного конденсатора равно максимальному значению энергии магнитного поля W м катушки: , откуда можно получить связь амплитудных значений тока в катушке и напряжения на конденсаторе: . Это отношение имеет размерность сопротивления, поэтому величину называют волновым, или характеристическим сопротивлением контура.

В реальном электрическом контуре из-за потерь энергии на нагревание проводников и диэлектриков энергия магнитного и электрического полей по-степенно превращается во внутреннюю энергию. Свободные электромагнитные колебания в контуре оказываются затухающими .

Потери энергии в контуре можно учесть путем введения активного сопротивления (рис. 9.9). Поскольку потери в диэлектрике конденсатора малы, это сопротивление практически равно активному сопротивлению катушки индуктивности. Считая направление тока, заряжающего конденсатор, положительным, запишем закон Ома для участка цепи от отрицательно заряженной обкладки конденсатора 1 до положительно заряженной 2 . В соответствии с (2.13) получаем: .


Направление обхода контура от точки 1 к точке 2 совпадает с направлением тока, поэтому произведение iR положительно. ЭДС самоиндукции по правилу Ленца отрицательна. Так как потенциал отрицательно заряженной пластины меньше, чем потенциал положительной, разность потенциалов (j 1 - j 2) отрицательна: , где q - заряд на конденсаторе. Изменение заряда конденсатора вызывается током, поэтому . С учетом вышеизложенного на основании закона Ома можно записать:

, или

, (9.8)

где b = R/2L - коэффициент затухания, - собственная частота.

Дифференциальное уравнение (9.8) подобно уравнению, полученному для механического пружинного маятника (см. раздел "Механика"). Решение данного уравнения имеет вид: , (9.9)

где q 0 - амплитуда тока в начальный момент времени,

Частота затухающих колебаний. Из (9.9) следует, что уменьшение амплитуды со временем происходит по экспоненциальному закону (рис. 9.10). Частота затухающих колебаний меньше частоты собственных колебаний w 0 . Из (9.10) следует, что при большом затухании (b ³ w 0 ) частота становится мнимой величиной. Это означает, что колебательного процесса не происходит и заряд конденсатора уменьшается до нуля без перезарядки. Такой процесс называется апериодическим .

Выразим условие перехода от колебательного процесса к апериодическому через параметры цепи. Имеем: (R/2L) 2 ³ 1/LC или .

Степень затухания колебаний принято характеризовать логариф-мичес-ким декрементом затуханияl . Он равен логарифму натуральному двух амплитуд через период Т :

или (9.11)

Еще одной характеристикой контура является добротность. Она связана с логарифмическим декрементом затухания соотношением . Нетрудно показать, что при малом затухании, когда b << w 0 и w" » w 0 , добротность выражается через параметры колебательного контура следующим образом: , (9.12)

то есть равна отношению характеристического сопротивления контура к активному сопротивлению потерь.

Чтобы понять причину возникновения резонанса необходимо разобраться как течёт ток через конденсатор и катушку индуктивности.
При протекании тока через катушку индуктивности напряжение опережает ток. Давайте рассмотрим этот процесс подробнее, когда напряжение на концах катушки максимально, ток через катушку не течет, по мере уменьшения напряжения, ток увеличивается и когда напряжение на концах катушки равно нулю, ток через катушку максимален. Далее, напряжение уменьшается и достигает минимума, ток при этом равен нулю. Из этого можно сделать вывод, что ток через катушку максимален, когда напряжение на её концах равно нулю и ток равен нулю, когда напряжение на её концах максимально. Таким образом, если сопоставить графики изменения напряжения и тока, создаётся впечатление, что напряжение опережает ток на 90 градусов. Это можно увидеть на рисунке ниже.

Совсем противоположно катушке индуктивности ведет себя конденсатор. Когда напряжение на концах конденсатора равно нулю, ток через него максимален, по мере зарядки конденсатора ток через него уменьшается, это связано с тем, что разность потенциалов между конденсатором и источником напряжения уменьшается, а чем меньше разность потенциалов, тем меньше ток. Когда конденсатор полностью заряжен ток через него не течет так, как нет разности потенциалов. Напряжение начинает уменьшаться и становится равно нулю, при этом ток максимален только течет в другом направлении, далее напряжение достигает минимума и ток через конденсатор снова не течет. Делаем вывод, что ток через конденсатор максимальный когда напряжение на его обкладках равно нулю и ток равен нулю когда напряжение на конденсаторе минимально. Если сопоставить графики изменения тока и напряжение, создается впечатление, что ток опережает напряжение на 90 градусов. Это можно увидеть на рисунке ниже.


На резонансной частоте для контура, состоящего из конденсатора и катушки индуктивности, неважно параллельный он или последовательный, их сопротивления равны и сдвиг фаз между напряжением и током равен нулю. Ведь действительно если подумать, то в конденсаторе ток опережает напряжение на 90 градусов, то есть +90 градусов, а в катушке индуктивности ток отстает от напряжения на 90 градусов, то есть -90 градусов и если сложить их получится нуль. Для пары, конденсатор и катушка индуктивности параллельный и последовательный резонанс возникают на одной и той же частоте.

Давайте рассмотрим резонанс в последовательном колебательном контуре.


На верхнем графике изображена зависимость тока от времени, протекающего через контур, ниже два графика это напряжения, на конденсаторе и катушке, самый нижний это сумма напряжений на катушке и конденсаторе. Видно, что суммарное напряжение на конденсаторе и катушке индуктивности равно нулю, также говорят, что сопротивление последовательного колебательного контура на резонансной частоте стремится к нулю.
Давайте соберем простую схему, изображенную на рисунке.


Сопротивление резистора должно быть больше выходного сопротивления генератора, то есть больше 50 Ohm, я взял первый попавшийся.
Расчетная резонансная частота такого контура 270 KHz, но так как номиналы имеют определенный допуск, который обычно указывается в процентах, придется ее подобрать. Подбирать будем исходя из того, что сопротивления катушки индуктивности и конденсатора на резонансной частоте равны, а так как они соединены последовательно, то равны и падения напряжений. Первый канал показывает напряжение на контуре, второй канал напряжение на катушке, канал Math показывает разность между первым и вторым каналом, а по сути напряжение на конденсаторе. Причина по которой, я не подключил щуп осциллографа параллельно конденсатору, будет подробно описана в следующей статье. Если кратко, то есть правило подключать земляной крокодил только к земле, если осциллограф и исследуемая схема питаются от бытовой сети и имеют заземление. Делается это, для того чтобы не спалить исследуемую схему и осциллограф.



На осциллограммах видно, что на резонансной частоте падение напряжения на катушке и конденсаторе равны и противоположны по знаку, а суммарное падение напряжения на контуре стремится к нулю. В последовательном колебательном контуре на резонансной частоте напряжение на катушке и конденсаторе выше чем на генераторе. Давайте увеличим частоту и посмотри что изменится.


Видим, что напряжение на катушке увеличилось потому, что увеличилось её сопротивление, так как оно прямо пропорционально зависит от частоты. Напряжение на конденсаторе уменьшилось потому, что его сопротивление с ростом частоты уменьшается. Теперь уменьшим частоту.


Видим, что напряжение на конденсаторе увеличилось, а на катушке уменьшилось, также надо отметить, что разность фаз между сигналами равна 180 градусам.

Давайте теперь рассмотрим резонанс в параллельном контуре, ситуация аналогичная с последовательным контуром, только в последовательном мы рассматривали напряжения, а в параллельном будем рассматривать токи.


Видим, что токи сдвинуты относительно друг друга на 180 градусов, а их сумма равна нулю, то есть ток через контур не течет, а его сопротивление стремится к бесконечности. Параллельный колебательный контур используют как полосно-заграждающий фильтр, радиолюбители называют его фильтр- пробка. Он не пропускает напряжение частота которого равна его резонансной частоте. Давайте соберем простую схему, изображенную на картинке ниже и посмотрим как будет изменяться напряжение на концах контура в зависимости от частоты.


Так как конденсатор и индуктивность те же, что и в прошлом эксперименте резонансная частота контура та же.


На резонансной частоте сопротивление контура стремится к бесконечности, следовательно и напряжение будет максимально. Давайте уменьшим частоту.


Видим, что напряжение на контуре уменьшилось, произошло это потому, что сопротивление катушки уменьшилось и она зашунтировала конденсатор.
Теперь давайте увеличим частоту.


С ростом частоты сопротивление конденсатора уменьшилось и он зашунтировал катушку.
Пожалуй, это всё, что хотелось рассказать про резонанс.

Последовательный колебательный контур — это цепь, состоящая их катушки индуктивности и конденсатора, которые соединяются последовательно. На схемах идеальный последовательный колебательный контур обозначается вот так:

Реальный колебательный контур имеет сопротивление потерь катушки и конденсатора. Это суммарное суммарное сопротивление потерь обозначается буквой R. В результате, реальный последовательный колебательный контур будет иметь такой вид:


R — это суммарное сопротивление потерь катушки и конденсатора

L — собственно сама индуктивность катушки

С — собственно сама емкость конденсатора

Колебательный контур и генератор частоты

Давайте проведем классический эксперимент, который есть в каждом учебнике по электронике. Для этого соберем вот такую схему:


Генератор у нас будет выдавать синус.

Для того, чтобы снять осциллограмму через последовательный колебательный контур, мы подключим в схему шунтовый резистор с малым сопротивлением в 0,5 Ом и с него уже будем снимать напряжение. То есть в данном случае мы шунт используем для наблюдения силы тока в цепи.


А вот и сама схема в реальности:


Слева-направо: шунтовый резистор, катушка индуктивности и конденсатор. Как вы уже поняли, сопротивление R — это суммарное сопротивление потерь катушки и конденсатора, так как нет идеальных радиоэлементов. Оно «прячется» внутри катушки и конденсатора, поэтому в реальной схеме отдельным радиоэлементом мы его не увидим.

Теперь нам осталось подцепить эту схему к генератору частоты и осциллографу , и прогнать по некоторым частотам, снимая осциллограмму с шунта U ш , а также снимая осциллограмму с самого генератора U ГЕН .


С шунта мы будем снимать напряжение , которое у нас отображает поведение силы тока в цепи, а с генератора собственно сам сигнал генератора. Давайте прогоним нашу схемку по некоторым частотам и глянем что есть что.

Влияние частоты на сопротивление колебательного контура

Итак, погнали. В схеме я взял конденсатор на 1мкФ и катушку индуктивности на 1 мГн. На генераторе настраиваю синус размахом в 4 Вольта. Вспоминаем правило: если в цепи соединение радиоэлементов идет последовательно друг за другом, значит, через них течет одинаковая сила тока.

Красная осциллограмма — это напряжение с генератора частоты, а желтая осциллограмма — отображение силы тока через напряжение на шунтовом резисторе.

Частота 200 Герц с копейками:


Как мы видим, при такой частоте ток в этой цепи есть, но очень слабый

Добавляем частоту. 600 Герц с копейками


Здесь мы уже отчетливо видим, что сила тока возросла, а также видим, что осциллограмма силы тока опережает напряжение. Попахивает конденсатора.

Добавляем частоту. 2 Килогерца


Сила тока стала еще больше.

3 Килогерца


Сила тока увеличилась. Заметьте также, что сдвиг фаз стал уменьшаться.

4,25 Килогерц


Осциллограммы почти уже сливаются в одну. Сдвиг фаз между напряжением и силой тока становится почти незаметным.

И вот на какой-то частоте у нас сила тока стала максимальной, а сдвиг фаз стал равен нулю. Запомните этот момент. Для нас он будет очень важен.



Еще совсем недавно ток опережал напряжение, а сейчас уже стал запаздывать после того, как выровнялся с ним по фазе. Так как ток уже отстает от напряжения, здесь уже попахивает реактивным сопротивлением катушки индуктивности.

Увеличиваем частоту еще больше


Сила тока начинает падать, а сдвиг фаз увеличивается.

22 Килогерца


74 Килогерца


Как вы видите, с увеличением частоты, сдвиг приближается к 90 градусов, а сила тока становится все меньше и меньше.

Резонанс

Давайте подробнее рассмотрим тот самый момент, когда сдвиг фаз был равен нулю и сила тока, проходящая через последовательный колебательный, контур была максимальна:

Это явление носит название резонанса .

Как вы помните, если у нас сопротивление становится малым, а в данном случае сопротивления потерь катушки и конденсатора очень маленькие, то в цепи начинает течь большая сила тока согласно закону Ома : I=U/R . Если генератор мощный, то напряжение на нем не меняется, а сопротивление становится пренебрежимо малым и вуаля! Ток растет как грибы после дождя, что мы и увидели, посмотрев на желтую осциллограмму при резонансе.

Формула Томсона

Если при резонансе у нас реактивное сопротивление катушки равняется реактивному сопротивлению конденсатора X L =X C , то можно уравнять их реактивные сопротивления и уже отсюда вычислить частоту, на которой произошел резонанс. Итак, реактивное сопротивление катушки у нас выражается формулой:

Реактивное сопротивление конденсатора вычисляется по формуле:

Приравниваем обе части и вычисляем отсюда F :

В данном случае мы получили формулу резонансной частоты . Это формула по другому называется формулой Томсона , как вы поняли, в честь ученого, который ее вывел.

Давайте по формуле Томсона посчитаем резонансную частоту нашего последовательного колебательного контура. Для этого я буду использовать свой RLC-транзисторметр .

Замеряем индуктивность катушки:


И замеряем нашу емкость:


Высчитываем по формуле нашу резонансную частоту:

У меня получилось 5, 09 Килогерц.

С помощью регулировки частоты и осциллографа я поймал резонанс на частоте 4,78 Килогерц (написано в нижнем левом углу)

Спишем погрешность в 200 с копейками Герц на погрешность измерений приборов. Как вы видите, формула Томпсона работает.

Резонанс напряжений

Давайте возьмем другие параметры катушки и конденсатора и посмотрим, что у нас происходит на самих радиоэлементах. Нам ведь надо досконально все выяснить;-). Беру катушку индуктивности с индуктивностью в 22 микрогенри:


и конденсатор в 1000 пФ


Итак, чтобы поймать резонанс, я не буду в схему добавлять . Поступлю более хитрее.

Так как мой генератор частоты китайский и маломощный, то при резонансе у нас в цепи остается только активное сопротивление потерь R. В сумме получается все равно маленькое значение сопротивления, поэтому ток при резонансе достигает максимальных значений. В результате этого, на внутреннем сопротивлении генератора частоты падает приличное напряжение и выдаваемая амплитуда частоты генератора падает. Я буду ловить минимальное значение этой амплитуды. Следовательно это и будет резонанс колебательного контура. Перегружать генератор — это не есть хорошо, но что не сделаешь ради науки!

Ну что же, приступим;-). Давайте сначала посчитаем резонансную частоту по формуле Томсона. Для этого я открываю онлайн калькулятор на просторах интернета и быстренько высчитываю эту частоту. У меня получилось 1,073 Мегагерц.

Ловлю резонанс на генераторе частоты по его минимальным значениям амплитуды. Получилось как-то вот так:


Размах амплитуды 4 Вольта

Хотя на генераторе частоты размах более 17 Вольт! Вот так вот сильно просело напряжение. И как видите, резонансная частота получилась чуток другая, чем расчетная: 1,109 Мегагерц.


Теперь небольшой прикол;-)

Вот этот сигнал мы подаем на наш последовательный колебательный контур:


Как видите, мой генератор не в силах выдать большую силу тока в колебательный контур на резонансной частоте, поэтому сигнал получился даже чуть искаженным на пиках.

Ну а теперь самое интересное. Давайте замеряем падение напряжения на конденсаторе и катушке на резонансной частоте. То есть это будет выглядеть вот так:


Смотрим напряжение на конденсаторе:


Размах амплитуды 20 Вольт (5х4)! Откуда? Ведь подавали мы на колебательный контур синус с частотой в 2 Вольта!


Ладно, может с осциллографом что-то произошло?. Давайте замеряем напряжение на катушке:


Народ! Халява!!! Подали 2 Вольта с генератора, а получили 20 Вольт и на катушке и на конденсаторе! Выигрыш энергии в 10 раз! Успевай только снимать энергию или с конденсатора или с катушки!

Ну ладно раз такое дело… беру лампочку от мопеда на 12 Вольт и цепляю ее к конденсатору или катушке. Лампочке ведь вроде как по-барабану на какой частоте работать и какой ток кушать. Выставляю амплитуду, чтобы на катушке или конденсаторе было где то Вольт 20 так как среднеквадратичное напряжение будет где-то Вольт 14, и цепляю поочередно к ним лампочку:



Как видите — полный ноль. Лампочка гореть не собирается, так что побрейтесь фанаты халявной энергии). Вы ведь не забыли, что мощность определяется произведением силы тока на напряжение? Напряжения вроде как-бы хватает, а вот силы тока — увы! Поэтому последовательный колебательный контур носит также название узкополосного (резонансного) усилителя напряжения , а не мощности!

Давайте обобщим, что у нас получилось в этих опытах.

При резонансе напряжение на катушке и на конденсаторе оказались намного больше, чем то, которое мы подавали на колебательный контур. В данном случае у нас получилось в 10 раз больше. Почему же напряжение на катушке при резонансе равняется напряжению на конденсаторе. Это легко объясняется. Так как в последовательном колебательном контуре катушка и кондер идут друг за другом, следовательно, в цепи протекает одна и та же сила тока.

При резонансе реактивное сопротивление катушки равняется реактивному сопротивлению конденсатора. Получаем по правилу шунта, что на катушке у нас падает напряжение U L = IX L , а на конденсаторе U C = IX C . А так как при резонансе у нас X L = X C , то получаем что U L = U C , ток ведь в цепи один и тот же;-). Поэтому резонанс в последовательном колебательном контуре называют также резонансом напряжений , так как напряжение на катушке на резонансной частоте равняется напряжению на конденсаторе .

Добротность

Ну раз уж мы начали задвигать тему колебательных контуров, поэтому мы не можем обойти стороной такой параметр, как добротность колебательного контура. Так как мы уже провели некоторые опыты, то нам будет проще определить добротность, исходя из амплитуды напряжений. Добротность обозначается буквой Q и вычисляется по первой простой формуле:


Давайте посчитаем добротность в нашем случае.

Так как цена деления одного квадратика по вертикали 2 Вольта, следовательно, амплитуда сигнала генератора частоты 2 Вольта.

А это то, что мы имеем на зажимах конденсатора или катушки. Здесь цена деления одного квадратика по вертикали 5 Вольт. Считаем квадратики и умножаем. 5х4=20 Вольт.

Считаем по формуле добротности:


Q=20/2=10 . В принципе немного и не мало. Пойдет. Вот так вот на практике можно найти добротность.

Есть также вторая формула для вычисления добротности.

где

R — сопротивление потерь в контуре, Ом

L — индуктивность, Генри

С — емкость, Фарад

Зная добротность, можно легко найти сопротивление потерь R последовательного колебательного контура.

Также хочу добавить пару слов о добротности. Добротность контура — это качественный показатель колебательного контура. В основном его стараются всегда увеличить различными всевозможными способами. Если взглянуть на формулу выше, то можно понять, для того, чтобы увеличить добротность, нам надо как-то уменьшить сопротивление потерь колебательного контура. Львиная доля потерь относится к катушке индуктивности, так как она уже конструктивно имеет большие потери. Она намотана из провода и в большинстве случаев имеет сердечник. На высоких частотах в проводе начинает проявляться скин-эффект, который еще больше вносит потери в контур.

Резюме

Последовательный колебательный контур состоит из катушки индуктивности и конденсатора, соединенных последовательно.

На какой-то частоте реактивное сопротивление катушки становится равным реактивному сопротивлению конденсатора и в цепи последовательного колебательного контура наступает такое явление, как резонанс .

При резонансе реактивные сопротивления катушки и конденсатора хоть и равны по модулю, но противоположны по знаку, поэтому они вычитается и в сумме дают ноль. В цепи остается только активное сопротивление потерь R.

При резонансе сила тока в цепи становится максимальной, так как сопротивление потерь катушки и конденсатора R в сумме дают малое значение.

При резонансе напряжение на катушке равняется напряжению на конденсаторе и превышает напряжение на генераторе.

Коэффициент, показывающий во сколько раз напряжение на катушке либо на конденсаторе превышает напряжение на генераторе, называется добротностью Q последовательного колебательного контура и показывает качественную оценку колебательного контура. В основном стараются сделать Q как можно больше.

На низких частотах колебательный контур имеет емкостную составляющую тока до резонанса, а после резонанса — индуктивную составляющую тока.

Сегодня нас интересует простейший колебательный контур , его принцип работы и применение.

За полезной информацией по другим темам переходите на наш телеграм-канал .

Колебания – процесс, повторяющийся во времени, характеризуется изменением параметров системы около точки равновесия.

Первое, что приходит на ум - это механические колебания математического или пружинного маятников. Но ведь колебания бывают и электромагнитными.

По определению колебательный контур (или – это электрическая цепь, в которой происходят свободные электромагнитные колебания.

Такой контур представляет собой электрическую цепь, состоящую из катушки индуктивностью L и конденсатора емкостью C . Соединены эти два элемента могут быть лишь двумя способами - последовательно и параллельно. Покажем на рисунке ниже изображение и схему простейшего колебательного контура.

Кстати! Для всех наших читателей сейчас действует скидка 10% на .

Кстати! Для всех наших читателей сейчас действует скидка 10% на .

Принцип действия колебательного контура

Давайте рассмотрим пример, когда сначала мы заряжаем конденсатор и замыкаем цепь. После этого в цепи начинает течь синусоидальный электрический ток. Конденсатор разряжается через катушку. В катушке при протекании через нее тока возникает ЭДС самоиндукции , направленная в сторону, противоположную току конденсатора.

Разрядившись окончательно, конденсатор благодаря энергии ЭДС катушки, которая в этот момент будет максимальна, начнет заряжаться вновь, но только в обратной полярности.

Колебания, которые происходят в контуре – свободные затухающие колебания. То есть без дополнительной подачи энергии колебания в любом реальном колебательном контуре рано или поздно прекратятся, как и любые колебания в природе.

Это обусловлено тем, что контур состоит из реальных материалов (конденсатор, катушка, провода), обладающих таким свойством, как электрическое сопротивление, и потери энергии в реальном колебательном контуре неизбежны. В противном случае это нехитрое устройство могло бы стать вечным двигателем , существование которого, как известно, невозможно.


Еще одна важная характеристика – добротность Q . Добротность определяет амплитуду резонанса и показывает, во сколько раз запасы энергии в контуре превышают потери энергии за один период колебаний. Чем выше добротность системы, тем медленнее будут затухать колебания.

Резонанс LC-контура

Электромагнитные колебания в происходят с определенной частотой, которая называется резонансной Подробнее про – в нашей отдельной статье. Частоту колебаний можно менять, варьируя такие параметры контура, как емкость конденсатора C , индуктивность катушки L , сопротивление резистора R (для LCR-контура ).

Применение колебательного контура

Колебательный контур широко применяется на практике. На его основе строятся частотные фильтры, без него не обходится ни один радиоприемник или генератор сигналов определенной частоты.

Если вы не знаете, как подступиться к расчету LC-контура или на это совершенно нет времени, обратитесь в профессиональный студенческий сервис . Качественная и быстрая помощь в решении любых задач не заставит себя ждать!

Электромагнитное поле может существовать и в отсутствие электрических зарядов или токов: именно такие «самоподдерживающиеся» электрическое и магнитное поля представляют собой электромагнитные волны, к которым относятся видимый свет, инфракрасное, ультрафиолетовое и рентгеновское излучения, радиоволны и т. д.

§ 25. Колебательный контур

Простейшая система, в которой возможны собственные электромагнитные колебания, - это так называемый колебательный контур, состоящий из соединенных между собой конденсатора и катушки индуктивности (рис. 157). Как и у механического осциллятора, например массивного тела на упругой пружине, собственные колебания в контуре сопровождаются энергетическими превращениями.

Рис. 157. Колебательный контур

Аналогия между механическими и электромагнитными колебаниями. Для колебательного контура аналог потенциальной энергии механического осциллятора (например, упругой энергии деформированной пружины) - это энергия электрического поля в конденсаторе. Аналог кинетической энергии движущегося тела - энергия магнитного поля в катушке индуктивности. В самом деле, энергия пружины пропорциональна квадрату смещения из положения равновесия а энергия конденсатора пропорциональна квадрату заряда Кинетическая энергия тела пропорциональна квадрату его скорости а энергия магнитного поля в катушке пропорциональна квадрату силы тока

Полная механическая энергия пружинного осциллятора Е равна сумме потенциальной и кинетической энергий:

Энергия колебаний. Аналогично, полная электромагнитная энергия колебательного контура равна сумме энергий электрического поля в конденсаторе и магнитного поля в катушке:

Из сопоставления формул (1) и (2) следует, что аналогом жесткости к пружинного осциллятора в колебательном контуре служит величина обратная емкости конденсатора С, а аналогом массы - индуктивность катушки

Напомним, что в механической системе, энергия которой дается выражением (1), могут происходить собственные незатухающие гармонические колебания. Квадрат частоты таких колебаний равен отношению коэффициентов при квадратах смещения и скорости в выражении для энергии:

Собственная частота. В колебательном контуре, электромагнитная энергия которого дается выражением (2), могут происходить собственные незатухающие гармонические колебания, квадрат частоты которых тоже, очевидно, равен отношению соответствующих коэффициентов (т. е. коэффициентов при квадратах заряда и силы тока):

Из (4) следует выражение для периода колебаний, называемое формулой Томсона:

При механических колебаниях зависимость смещения х от времени определяется косинусоидальной функцией, аргумент которой называется фазой колебаний:

Амплитуда и начальная фаза. Амплитуда А и начальная фаза а определяются начальными условиями, т. е. значениями смещения и скорости при

Аналогично, при электромагнитных собственных колебаниях в контуре заряд конденсатора зависит от времени по закону

где частота определяется, в соответствии с (4), только свойствами самого контура, а амплитуда колебаний заряда и начальная фаза а, как и у механического осциллятора, определяется

начальными условиями, т. е. значениями заряда конденсатора и силы тока при Таким образом, собственная частота не зависит от способа возбуждения колебаний, в то время как амплитуда и начальная фаза определяются именно условиями возбуждения.

Энергетические превращения. Рассмотрим подробнее энергетические превращения при механических и электромагнитных колебаниях. На рис. 158 схематически изображены состояния механического и электромагнитного осцилляторов через промежутки времени в четверть периода

Рис. 158. Энергетические превращения при механических и электромагнитных колебаниях

Дважды за период колебаний энергия превращается из одного вида в другой и обратно. Полная энергия колебательного контура как и полная энергия механического осциллятора, в отсутствие диссипации остается неизменной. Чтобы убедиться в этом, нужно в формулу (2) подставить выражение (6) для и выражение для силы тока

Используя формулу (4) для получаем

Рис. 159. Графики зависимости от времени заряда конденсатора энергии электрического поля конденсатора и энергии магнитного поля в катушке

Неизменная полная энергия совпадает с потенциальной энергией в моменты, когда заряд конденсатора максимален, и совпадает с энергией магнитного поля катушки - «кинетической» энергией - в моменты, когда заряд конденсатора обращается в нуль, а ток максимален. При взаимных превращениях два вида энергии совершают гармонические колебания с одинаковой амплитудой в противофазе друг с другом и с частотой относительно своего среднего значения . В этом легко убедиться как из рис. 158, так и с помощью формул тригонометрических функций половинного аргумента:

Графики зависимости от времени заряда конденсатора энергии электрического поля и энергии магнитного поля показаны на рис. 159 для начальной фазы

Количественные закономерности собственных электромагнитных колебаний можно установить непосредственно на основе законов для квазистационарных токов, не обращаясь к аналогии с механическими колебаниями.

Уравнение для колебаний в контуре. Рассмотрим простейший колебательный контур, показанный на рис. 157. При обходе контура, например, против часовой стрелки, сумма напряжений на катушке индуктивности и конденсаторе в такой замкнутой последовательной цепи равна нулю:

Напряжение на конденсаторе связано с зарядом пластины и с емкостью С соотношением Напряжение на индуктивности в любой момент времени равно по модулю и противоположно по знаку ЭДС самоиндукции, поэтому Ток в цепи равен скорости изменения заряда конденсатора: Подставляя силу тока в выражение для напряжения на катушке индуктивности и обозначая вторую производную заряда конденсатора по времени через

Получим Теперь выражение (10) принимает вид

Перепишем это уравнение иначе, вводя по определению :

Уравнение (12) совпадает с уравнением гармонических колебаний механического осциллятора с собственной частотой Решение такого уравнения дается гармонической (синусоидальной) функцией времени (6) с произвольными значениями амплитуды и начальной фазы а. Отсюда следуют все приведенные выше результаты, касающиеся электромагнитных колебаний в контуре.

Затухание электромагнитных колебаний. До сих пор обсуждались собственные колебания в идеализированной механической системе и идеализированном LC-контуре. Идеализация заключалась в пренебрежении трением в осцилляторе и электрическим сопротивлением в контуре. Только в этом случае система будет консервативной и энергия колебаний будет сохраняться.

Рис. 160. Колебательный контур с сопротивлением

Учет диссипации энергии колебаний в контуре можно провести аналогично тому, как это было сделано в случае механического осциллятора с трением. Наличие электрического сопротивления катушки и соединительных проводов неизбежно связано с выделением джоулевой теплоты. Как и раньше, это сопротивление можно рассматривать как самостоятельный элемент в электрической схеме колебательного контура, считая катушку и провода идеальными (рис. 160). При рассмотрении квазистационарного тока в таком контуре в уравнение (10) нужно добавить напряжение на сопротивлении

Подставляя в получаем

Вводя обозначения

перепишем уравнение (14) в виде

Уравнение (16) для имеет точно такой же вид, как и уравнение для при колебаниях механического осциллятора с

трением, пропорциональным скорости (вязким трением). Поэтому при наличии электрического сопротивления в контуре электромагнитные колебания происходят по такому же закону, как и механические колебания осциллятора с вязким трением.

Диссипация энергии колебаний. Как и при механических колебаниях, можно установить закон убывания со временем энергии собственных колебаний, применяя закон Джоуля-Ленца для подсчета выделяющейся теплоты:

В результате в случае малого затухания для промежутков времени, много больших периода колебаний, скорость убывания энергии колебаний оказывается пропорциональной самой энергии:

Решение уравнения (18) имеет вид

Энергия собственных электромагнитных колебаний в контуре с сопротивлением убывает по экспоненциальному закону.

Энергия колебаний пропорциональна квадрату их амплитуды. Для электромагнитных колебаний это следует, например, из (8). Поэтому амплитуда затухающих колебаний, в соответствии с (19), убывает по закону

Время жизни колебаний. Как видно из (20), амплитуда колебаний убывает в раз за время равное независимо от начального значения амплитуды Это время х носит название времени жизни колебаний, хотя, как видно из (20), колебания формально продолжаются бесконечно долго. В действительности, конечно, о колебаниях имеет смысл говорить лишь до тех пор, пока их амплитуда превышает характерное значение уровня тепловых шумов в данной цепи. Поэтому фактически колебания в контуре «живут» конечное время, которое, однако, может в несколько раз превосходить введенное выше время жизни х.

Часто бывает важно знать не само по себе время жизни колебаний х, а число полных колебаний, которое произойдет в контуре за это время х. Это число умноженное на называют добротностью контура.

Строго говоря, затухающие колебания не являются периодическими. При малом затухании можно условно говорить о периоде, под которым понимают промежуток времени между двумя

последонательными максимальными значениями заряда конденсатора (одинаковой полярности), либо максимальными значениями тока (одного направления).

Затухание колебаний влияет на период, приводя к его возрастанию по сравнению с идеализированным случаем отсутствия затухания. При малом затухании увеличение периода колебаний очень незначительно. Однако при сильном затухании колебаний вообще может не быть: заряженный конденсатор будет разряжаться апериодически, т. е. без изменения направления тока в контуре. Так будет при т. е. при

Точное решение. Сформулированные выше закономерности затухающих колебаний следуют из точного решения дифференциального уравнения (16). Непосредственной подстановкой можно убедиться, что оно имеет вид

где - произвольные постоянные, значения которых определяются из начальных условий. При малом затухании множитель при косинусе можно рассматривать как медленно меняющуюся амплитуду колебаний.

Задача

Перезарядка конденсаторов через катушку индуктивности. В цепи, схема которой показана на рис. 161, заряд верхнего конденсатора равен а нижний не заряжен. В момент ключ замыкают. Найти зависимость от времени заряда верхнего конденсатора и тока в катушке.

Рис. 161. В начальный момент времени заряжен только один конденсатор

Рис. 162. Заряды конденсаторов и ток в контуре после замыкания ключа

Рис. 163. Механическая аналогия для электрической цепи, показанной на рис. 162

Решение. После замыкания ключа в цепи возникают колебания: верхний конденсатор начинает разряжаться через катушку, заряжая при этом нижний; затем все происходит в обратном направлении. Пусть, например, при положительно заряжена верхняя обкладка конденсатора. Тогда

спустя малый промежуток времени знаки зарядов обкладок конденсаторов и направление тока будут такими, как показано на рис. 162. Обозначим через заряды тех обкладок верхнего и нижнего конденсаторов, которые соединены между собой через катушку индуктивности. На основании закона сохранения электрического заряда

Сумма напряжений на всех элементах замкнутого контура в каждый момент времени равна нулю:

Знак напряжения на конденсаторе соответствует распределению зарядов на рис. 162. и указанному направлению тока. Выражение для тока через катушку можно записать в любом из двух видов:

Исключим из уравнения помощью соотношений (22) и (24):

Вводя обозначения

перепишем (25) в следующем виде:

Если вместо ввести функцию

и учесть, что то (27) принимает вид

Это обычное уравнение незатухающих гармонических колебаний, которое имеет решение

где и - произвольные постоянные.

Возвращаясь от функции получим для зависимости от времени заряда верхнего конденсатора следующее выражение:

Для определения постоянных и а учтем, что в начальный момент заряд а ток Для силы тока из (24) и (31) имеем

Поскольку отсюда следует, что Подставляя теперь в и учитывая, что получаем

Итак, выражения для заряда и силы тока имеют вид

Характер осцилляций заряда и тока особенно нагляден при одинаковых значениях емкостей конденсаторов . В этом случае

Заряд верхнего конденсатора осциллирует с амплитудой около среднего значения, равного За половину периода колебаний он уменьшается от максимального значения в начальный момент до нуля, когда весь заряд оказывается на нижнем конденсаторе.

Выражение (26) для частоты колебаний разумеется, можно было написать сразу, поскольку в рассматриваемом контуре конденсаторы соединены последовательно. Однако написать выражения (34) непосредственно затруднительно, так как при таких начальных условиях нельзя входящие в контур конденсаторы заменить одним эквивалентным.

Наглядное представление о происходящих здесь процессах дает механический аналог данной электрической цепи, показанный на рис. 163. Одинаковые пружины соответствуют случаю конденсаторов одинаковой емкости. В начальный момент левая пружина сжата, что соответствует заряженному конденсатору, а правая находится в недеформированном состоянии, так как аналогом заряда конденсатора здесь служит степень деформации пружины. При прохождении через среднее положение обе пружины частично сжаты, а в крайнем правом положении левая пружина недеформирована, а правая сжата так же, как левая в начальный момент, что соответствует полному перетеканию заряда с одного конденсатора на другой. Хотя шар совершает обычные гармонические колебания около положения равновесия, деформация каждой из пружин описывается функцией, среднее значение которой отлично от нуля.

В отличие от колебательного контура с одним конденсатором, где при колебаниях происходит повторяющаяся его полпая перезарядка, в рассмотренной системе первоначально заряженный конденсатор полностью не перезаряжается. Например, при его заряд уменьшается до нуля, а затем снова восстанавливается в той же полярности. В остальном эти колебания не отличаются от гармонических колебаний в обычном контуре. Энергия этих колебаний сохраняется, если, разумеется, можно пренебречь сопротивлением катушки и соединительных проводов.

Поясните, почему из сопоставления формул (1) и (2) для механической и электромагнитной энергий сделан вывод о том, что аналогом жесткости к является а аналогом массы индуктивность а не наоборот.

Приведите обоснование вывода выражения (4) для собственной частоты электромагнитных колебаний в контуре из аналогии с механическим пружинным осциллятором.

Гармонические колебания в -контуре характеризуются амплитудой, частотой, периодом, фазой колебаний, начальной фазой. Какие из этих величин определяются свойствами самого колебательного контура, а какие зависят от способа возбуждения колебаний?

Докажите, что средние значения электрической и магнитной энергий при собственных колебаниях в контуре равны между собой и составляют половину полной электромагнитной энергии колебаний.

Как применить законы квазистационарных явлений в электрической цепи для вывода дифференциального уравнения (12) гармонических колебаний в -контуре?

Какому дифференциальному уравнению удовлетворяет сила тока в LC-контуре?

Проведите вывод уравнения для скорости убывания энергии колебаний при малом затухании аналогично тому, как это было сделано для механического осциллятора с трением, пропорциональным скорости, и покажите, что для промежутков времени, значительно превосходящих период колебаний, это убывание происходит по экспоненциальному закону. Какой смысл имеет использованный здесь термин «малое затухание»?

Покажите, что функция даваемая формулой (21), удовлетворяет уравнению (16) при любых значениях и а.

Рассмотрите механическую систему, показанную на рис. 163, и найдите зависимость от времени деформации левой пружины и скорости массивного тела.

Контур без сопротивления с неизбежными потерями. В рассмотренной выше задаче, несмотря на не совсем обычные начальные условия для зарядов на конденсаторах, можно было применить обычные уравнения для электрических цепей, поскольку там были выполнены условия квазистационарности протекающих процессов. А вот в цепи, схема которой показана на рис. 164, при формальном внешнем сходстве со схемой на рис. 162, условия квазистационарности не выполняются, если в начальный момент один конденсатор заряжен, а второй - нет.

Обсудим подробнее причины, по которым здесь нарушаются условия квазистационарности. Сразу после замыкания

Рис. 164. Электрическая цепь, для которой не выполняются условия квазистационарности

ключа все процессы разыгрываются только в соединенных между собой конденсаторах, так как нарастание тока через катушку индуктивности происходит сравнительно медленно и поначалу ответвлением тока в катушку можно пренебречь.

При замыкании ключа возникают быстрые затухающие колебания в контуре, состоящем из конденсаторов и соединяющих их проводов. Период таких колебаний очень мал, так как мала индуктивность соединительных проводов. В результате этих колебаний заряд на пластинах конденсаторов перераспределяется, после чего два конденсатора можно рассматривать как один. Но в первый момент этого делать нельзя, ибо вместе с перераспределением зарядов происходит и перераспределение энергии, часть которой переходит в теплоту.

После затухания быстрых колебаний в системе происходят колебания, как в контуре с одним конденсатором емкости заряд которого в начальный момент равен первоначальному заряду конденсатора Условием справедливости приведенного рассуждения является малость индуктивности соединительных проводов по сравнению с индуктивностью катушки.

Как и в рассмотренной задаче, полезно и здесь найти механическую аналогию. Если там две пружины, соответствующие конденсаторам, были расположены по обе стороны массивного тела, то здесь они должны быть расположены по одну сторону от него, так чтобы колебания одной из них могли передаваться другой при неподвижном теле. Вместо двух пружин можно взять одну, но только в начальный момент она должна быть деформирована неоднородно.

Захватим пружину за середину и растянем ее левую половину на некоторое расстояние Вторая половина пружины останется в недеформированном состоянии, так что груз в начальный момент смещен из положения равновесия вправо на расстояние и покоится. Затем отпустим пружину. К каким особенностям приведет то обстоятельство, что в начальный момент пружина деформирована неоднородно? ибо, как нетрудно сообразить, жесткость «половины» пружины равна Если масса пружины мала по сравнению с массой шара, частота собственных колебаний пружины как протяженной системы много больше частоты колебаний шара на пружине. Эти «быстрые» колебания затухнут за время, составляющее малую долю периода колебаний шара. После затухания быстрых колебаний натяжение в пружине перераспределяется, а смещение груза практически остается равным так как груз за это время не успевает заметно сдвинуться. Деформация пружины становится однородной, а энергия системы равной

Таким образом, роль быстрых колебаний пружины свелась к тому, что запас энергии системы уменьшился до того значения, которое соответствует однородной начальной деформации пружины. Ясно, что дальнейшие процессы в системе не отличаются от случая однородной начальной деформации. Зависимость смещения груза от времени выражается той же самой формулой (36).

В рассмотренном примере в результате быстрых колебаний превратилась во внутреннюю энергию (в теплоту) половина первоначального запаса механической энергии. Ясно, что, подвергая начальной деформации не половину, а произвольную часть пружины, можно превратить во внутреннюю энергию любую долю первоначального запаса механической энергии. Но во всех случаях энергия колебаний груза на пружине соответствует запасу энергии при той же однородной начальной деформации пружины.

В электрической цепи в результате затухающих быстрых колебаний энергия заряженного конденсатора частично выделяется в виде джоулевой теплоты в соединительных проводах. При равных емкостях это будет половина первоначального запаса энергии. Вторая половина остается в форме энергии сравнительно медленных электромагнитных колебаний в контуре, состоящем из катушки и двух соединенных параллельно конденсаторов С, и

Таким образом, в этой системе принципиально недопустима идеализация, при которой пренебрегается диссипацией энергии колебаний. Причина этого в том, что здесь возможны быстрые колебания, не затрагивающие катушки индуктивности или массивного тела в аналогичной механической системе.

Колебательный контур с нелинейными элементами. При изучении механических колебаний мы видели, что колебания далеко не всегда бывают гармоническими. Гармонические колебания - это характерное свойство линейных систем, в которых

возвращающая сила пропорциональна отклонению от положения равновесия, а потенциальная энергия - квадрату отклонения. Реальные механические системы этими свойствами, как правило, не обладают, и колебания в них можно считать гармоническими лишь при малых отклонениях от положения равновесия.

В случае электромагнитных колебаний в контуре может сложиться впечатление, что мы имеем дело с идеальными системами, в которых колебания строго гармонические. Однако это верно лишь до тех пор, пока емкость конденсатора и индуктивность катушки можно считать постоянными, т. е. не зависящими от заряда и тока. Конденсатор с диэлектриком и катушка с сердечником, строго говоря, представляют собой нелинейные элементы. Когда конденсатор заполнен сегнетоэлектриком, т. е. веществом, диэлектрическая проницаемость которого сильно зависит от приложенного электрического поля, емкость конденсатора уже нельзя считать постоянной. Аналогично, индуктивность катушки с ферромагнитным сердечником зависит от силы тока, так как ферромагнетик обладает свойством магнитного насыщения.

Если в механических колебательных системах массу, как правило, можно считать постоянной и нелинейность возникает только из-за нелинейного характера действующей силы, то в электромагнитном колебательном контуре нелинейность может возникать как за счет конденсатора (аналога упругой пружины), так и за счет катушки индуктивности (аналога массы).

Почему для колебательного контура с двумя параллельными конденсаторами (рис. 164) неприменима идеализация, в которой система считается консервативной?

Почему быстрые колебания, приводящие к диссипации энергии колебаний в контуре на рис. 164, не возникали в контуре с двумя последовательными конденсаторами, показанными на рис. 162?

Какие причины могут приводить к несинусоидальности электромагнитных колебаний в контуре?

Похожие статьи